Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20210907508
• Fiber Materials • Next Articles
LUO Xiaolei1, LIU Lin2, YAO Juming2,3()
CLC Number:
[1] | 李德利, 刘世扬, 贺燕丽. 我国废旧纺织品资源循环再利用简况[J]. 高科技纤维与应用, 2021, 46(2): 11-14. |
LI Deli, LIU Shiyang, HE Yanli. Briefing on recycling and reuse of waste textile resources in China[J]. Hi-Tech Fiber and Application, 2021, 46(2): 11-14. | |
[2] | 程丹. 基于碱/尿纤维素溶液的功能材料[D]. 武汉: 武汉大学, 2018: 1-61. |
CHENG Dan. Functional cellulose materials based on aqueous alkali hydroxide/urea solution[D]. Wuhan: Wuhan University, 2018: 1-61. | |
[3] | 张婷婷, 许可欣, 金梦甜, 等. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(7): 175-183. |
ZHANG Tingting, XU Kexin, JIN Mengtian, et al. Rencnet progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment[J]. Journal of Textile Research, 2021, 42(7): 175-183.
doi: 10.1177/004051757204200309 |
|
[4] |
SUN J M, WU Z W, AN B, et al. Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose[J]. Composites Part B, 2021.DOI: 10.1016/j.compositesb.2021.108997.
doi: 10.1016/j.compositesb.2021.108997 |
[5] |
LI C Q, XU H, GAO J K, et al. Tunable titanium metal-organic frameworks with infinite 1D Ti-O rods for efficient visble-light-driven photocatalytic H2 evolution[J]. Journal of Materials Chemistry A, 2019, 7(19): 11928-11933.
doi: 10.1039/C9TA01942A |
[6] | GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double-network structural materails for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537. |
[7] |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449 |
[8] |
ZHOU S Y, VARVARA A K, Marcus V T C, et al. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardan-cy[J]. Nano-Micro Letter, 2020.DOI: 10.1007/s40820-019-0343-4.
doi: 10.1007/s40820-019-0343-4 |
[9] |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449 |
[10] | CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:18405-18413. |
[11] | 姚奉奇. 茶叶多酚类衍生物热解和氧化特性及其反应机制[D]. 合肥: 中国科学技术大学, 2018: 1-62. |
YAO Fengqi. Study on pyrolysis, oxidation behavior and associated reaction mechanism of tea polyphenol derivatives[D]. Hefei: University of Science and Technology of China, 2018: 1-62. | |
[12] |
RYAN J S, KEVIN M H, SOFIA R, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flamm-ability[J]. Advanced Functional Materials, 2018.DOI: 10.1002/adfm.201703289.
doi: 10.1002/adfm.201703289 |
[13] | 杨子银. 茶(红茶)与茶(camellia sinensis)花多酚类物质的分离鉴定及其抗氧化机制研究[D]. 杭州: 浙江大学, 2007: 1-52. |
YANG Ziyin. Isolation, identification of polyphonels in black tea and tea (camellia sinensis) flower and studies on their antioxidant function and mechanism[D]. Hangzhou: Zhejiang University, 2007: 1-52. | |
[14] |
CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232:1309-1320.
doi: 10.1016/j.jclepro.2019.06.026 |
[15] |
LUCIE C, FOUAD L, SYLVAIN B, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science and Engineering R, 2017, 117:1-25.
doi: 10.1016/j.mser.2017.04.001 |
[16] |
LIU B, XU Y, PAN Y, et al. Facile synjournal of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly(lactic acid)[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2020.127761.
doi: 10.1016/j.cej.2020.127761 |
[17] | 杨晓晓. 基于典型产物的纤维素快速热解机制研究及模型构建[D]. 北京: 北京林业大学, 2020: 1-88. |
YANG Xiaoxiao. Mechanism research and modelling of cellulose fast pyrolysis based on the typical products[D]. Beijing: Beijing Forestry University, 2020: 1-88. | |
[18] |
WAN C Y, LIU M S, TIAN P H, et al. Renewable vitamin B5 reactive N-P flame retardant endows cotton with excellent fire resistance and durability[J]. Cellulose, 2020, 27:1745-1761.
doi: 10.1007/s10570-019-02886-z |
|