Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20210907508

• Fiber Materials •     Next Articles

Preparation and study of pure biomass cellulose aerogels for flame retardancy

LUO Xiaolei1, LIU Lin2, YAO Juming2,3()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. School of Materials Science & Engineering, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    3. School of Materials Science and Chemical Engineering, Ningbo University,Ningbo, Zhejiang 315211, China
  • Received:2021-09-23 Revised:2021-11-03 Online:2022-01-15 Published:2022-01-28
  • Contact: YAO Juming E-mail:yaoj@zstu.edu.cn

Abstract:

In order to recycle textiles and enhance the green and low-carbon circular development, regenerated cellulose aerogels were prepared from waste cotton yarns, and the biomass tea polyphenol extracted from agricultural and forestry waste was deposited on the aerogel surface under the driving of water environment. The flame retardant cellulose aerogel (BTCA) was developed for pure biomass energy saving and heat preservation. The flame retardancy, thermal stability, thermal decomposition vapor and solid products, and flame retardant mechanism of BTCA were studied and analyzed by limiting oxygen index method, thermogravimetric analysis, thermogravimetric infrared spectroscopy and Raman spectroscopy. Because the biomass tea polyphenol deposits have an excellent antioxidant capacity, it can promote the dehydration and carbonization of cellulose molecular chain at the same time. Based on this, solid-phase flame retardant was achieved, and their thermal stability has been significantly improved. The limit oxygen index was as high as 32.7% and the cellulose aerogel could self-extinguish when leaving the flame.

Key words: waste cotton textiles, total biomass flame retardance, cellulose aerogel, tea polyphenol, flame retardancy

CLC Number: 

  • TS195

Fig.1

Microstructure structure of CA (a)and BTCA-2.5/5 (b)"

Fig.2

Chemical structure analysis of materials. (a) FT-IR spectra of CA and BTCA-2.5/5; (b) Infrared spectra of catechin standard samples"

Fig.3

TG and DTG curves of CA and BTCA-2.5/5 under air and N2 atmosphere. (a) TG curves in air; (b) DTG curves in air; (c) TG curves in N2; (d) DTG curves in N2"

Tab.1

Thermal stability analysis related data of CA and BTCA-2.5/5"

样品 气氛 T10%/℃ T75%/℃ Vmax1/(%·min-1) Vmax2/(%·min-1) TVmax1/℃ TVmax2/℃ 残余比/%
CA 空气 252.39 402.79 -17.37 -6.81 340.39 457.99
氮气 257.28 388.48 -13.49 320.24 13.07
BTCA-2.5/5 空气 257.19 471.59 -9.93 -10.08 335.49 561.84
氮气 262.88 -10.89 332.79 28.86

Fig.4

LOI of BTCA with different conditions. (a) LOI of BTCA with addition of summer and autumn tea during preparation of leaching solution; (b) LOI of BTCA with reaction time"

Fig.5

Combustion phenomenon of CA (a) and BTCA-2.5/5 (b) and their carbon slag state"

Fig.6

TG-FT-IR spectrum of CA (a) and BTCA-2.5/5 (b)"

Fig.7

SEM images, raman and infrared spectra of carbon slag. (a) SEM of BTCA-2.5/5 carbon; (b) FT-IR spectrum of BTCA-2.5/5 before and after combustion; (c) Raman spectrum of CA carbon slag; (d) Raman spectrum of BTCA-2.5/5 carbon slag"

[1] 李德利, 刘世扬, 贺燕丽. 我国废旧纺织品资源循环再利用简况[J]. 高科技纤维与应用, 2021, 46(2): 11-14.
LI Deli, LIU Shiyang, HE Yanli. Briefing on recycling and reuse of waste textile resources in China[J]. Hi-Tech Fiber and Application, 2021, 46(2): 11-14.
[2] 程丹. 基于碱/尿纤维素溶液的功能材料[D]. 武汉: 武汉大学, 2018: 1-61.
CHENG Dan. Functional cellulose materials based on aqueous alkali hydroxide/urea solution[D]. Wuhan: Wuhan University, 2018: 1-61.
[3] 张婷婷, 许可欣, 金梦甜, 等. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(7): 175-183.
ZHANG Tingting, XU Kexin, JIN Mengtian, et al. Rencnet progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment[J]. Journal of Textile Research, 2021, 42(7): 175-183.
doi: 10.1177/004051757204200309
[4] SUN J M, WU Z W, AN B, et al. Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose[J]. Composites Part B, 2021.DOI: 10.1016/j.compositesb.2021.108997.
doi: 10.1016/j.compositesb.2021.108997
[5] LI C Q, XU H, GAO J K, et al. Tunable titanium metal-organic frameworks with infinite 1D Ti-O rods for efficient visble-light-driven photocatalytic H2 evolution[J]. Journal of Materials Chemistry A, 2019, 7(19): 11928-11933.
doi: 10.1039/C9TA01942A
[6] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double-network structural materails for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537.
[7] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449
[8] ZHOU S Y, VARVARA A K, Marcus V T C, et al. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardan-cy[J]. Nano-Micro Letter, 2020.DOI: 10.1007/s40820-019-0343-4.
doi: 10.1007/s40820-019-0343-4
[9] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449
[10] CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:18405-18413.
[11] 姚奉奇. 茶叶多酚类衍生物热解和氧化特性及其反应机制[D]. 合肥: 中国科学技术大学, 2018: 1-62.
YAO Fengqi. Study on pyrolysis, oxidation behavior and associated reaction mechanism of tea polyphenol derivatives[D]. Hefei: University of Science and Technology of China, 2018: 1-62.
[12] RYAN J S, KEVIN M H, SOFIA R, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flamm-ability[J]. Advanced Functional Materials, 2018.DOI: 10.1002/adfm.201703289.
doi: 10.1002/adfm.201703289
[13] 杨子银. 茶(红茶)与茶(camellia sinensis)花多酚类物质的分离鉴定及其抗氧化机制研究[D]. 杭州: 浙江大学, 2007: 1-52.
YANG Ziyin. Isolation, identification of polyphonels in black tea and tea (camellia sinensis) flower and studies on their antioxidant function and mechanism[D]. Hangzhou: Zhejiang University, 2007: 1-52.
[14] CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232:1309-1320.
doi: 10.1016/j.jclepro.2019.06.026
[15] LUCIE C, FOUAD L, SYLVAIN B, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science and Engineering R, 2017, 117:1-25.
doi: 10.1016/j.mser.2017.04.001
[16] LIU B, XU Y, PAN Y, et al. Facile synjournal of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly(lactic acid)[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2020.127761.
doi: 10.1016/j.cej.2020.127761
[17] 杨晓晓. 基于典型产物的纤维素快速热解机制研究及模型构建[D]. 北京: 北京林业大学, 2020: 1-88.
YANG Xiaoxiao. Mechanism research and modelling of cellulose fast pyrolysis based on the typical products[D]. Beijing: Beijing Forestry University, 2020: 1-88.
[18] WAN C Y, LIU M S, TIAN P H, et al. Renewable vitamin B5 reactive N-P flame retardant endows cotton with excellent fire resistance and durability[J]. Cellulose, 2020, 27:1745-1761.
doi: 10.1007/s10570-019-02886-z
[1] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[2] WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics [J]. Journal of Textile Research, 2021, 42(04): 132-138.
[3] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[4] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[5] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
[6] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[7] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[8] . Moisture absorption and sweat transport finishing o meta-aramid fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 80-86.
[9] . Flame retardant finishing of polyester fabric with phenyl phosphate ester containing triazine structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 98-102.
[10] . Preparation and performance of melamine fiber felt [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 65-68.
[11] . Flame retardant finishing of silk fabrics with boron phosphate doped silica sol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 96-101.
[12] . Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly(ethylene terethalate) [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 11-17.
[13] . Influence of zinc borate/aluminum hydroxide on flame retardancy and stability of polyvinyl chloride textile structure material [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 105-110.
[14] . Adsorption of tea polyphenols on cotton fabric and its antibacterial and deodorant properties [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 100-104.
[15] . Antibacterial mechanism and performance of PLA/TP composed nanofiber membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 6-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[9] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[10] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .