Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 58-64.doi: 10.13475/j.fzxb.20210907907

• Textile Engineering • Previous Articles     Next Articles

Development of environmentally friendly knitted fabrics with 3-D moisture conductive structure and performance evaluation on moisture absorption and quick-drying

WANG Yue1, WANG Chunhong1,2(), XU Lei1, LIU Shengkai1, LU Chao1, WANG Lijian1, YANG Lu1, ZUO Qi1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2021-09-24 Revised:2022-01-22 Online:2022-10-15 Published:2022-10-28
  • Contact: WANG Chunhong E-mail:wangchunhong@tiangong.edu.cn

Abstract:

In order to develop environmentally friendly fabrics with moisture absorption and quick-drying performance, a new 3-D moisture-conducting structure was designed to develop double-side derivative fabrics with knitted spacer structure. TencelTM and recycled polyester fibers were used, and 9 different knitted fabrics were experimented on with single-sided and double-sided constructions. Using the derivative knitted spacer structure, the fabric made from TencelTM/recycled polyester fibers was compared with the fabric of TencelTM/hollow polyester and that of TencelTM/DuPontTM Sorona®. The fabrics were tested and analyzed by moisture management method and combination tests method. The fuzzy comprehensive evaluation method was used to compare the moisture absorption and quick-drying performance of the fabrics. The results show that two test methods yield different values in the ranking of the moisture absorption and quick-drying properties. Through comprehensive analysis, 18 tex TencelTM and 33.3 tex (96 f) recycled polyester filament fabric with 3-D moisture-conducting structure has the best moisture absorption and quick-drying performance. Of the single-side fabrics, the mixed knitted fabrics of TencelTM/recycled polyester filament with flat knit structure have excellent moisture absorption and quick-drying performance. These fabrics have the potential to be used in the field of green and environmentally friendly sportswear.

Key words: environmental protection, moisture absorption and quick-drying, 3-D moisture transmission structure, dynamic moisture transmission method, method for combination test, knitted fabric

CLC Number: 

  • TS186.2

Fig.1

3-D model of fabric structure and section diagram"

Fig.2

Four knitted structures. (a) Flat knit structure; (b) Areolar structure; (c) Spacer knitted structure;(d) Derivative knitted spacer structure"

Tab.1

Structure and material composition of knitted fabric"

组织
结构

原料规格
纬平针
组织
1# 双股天丝(18.0 tex)
2# 双股再生涤纶短纤纱(18.0 tex)
3# 双股天丝(18.0 tex)与双股再生涤纶短纤纱(18.0 tex)隔1行交替
4# 双股天丝(18.0 tex)与双股再生涤纶长丝(16.7 tex)隔1行交替
蜂窝网
眼组织
5# 双股天丝(18.0 tex)与双股再生涤纶长丝(16.7 tex)隔2行交替
纬编间
隔组织
6# 天丝(18.0 tex)与再生涤纶长丝(16.7 tex)
7# 天丝(18.0 tex)与再生涤纶长丝(33.3 tex)
变化纬
编间隔
组织
8# 天丝(18.0 tex)与再生涤纶长丝(16.7 tex)
9# 天丝(18.0 tex)与再生涤纶长丝(33.3 tex)
10# 天丝(18.0 tex)与杜邦TMSorona®高弹纱(33.3 tex)
11# 天丝(18.0 tex)与中空涤纶短纤纱(28.0 tex)

Fig.3

Schematic diagram of relation between location and time of fabric moisture diffusion"

Fig.4

Result of water absorption rate"

Fig.5

Result of wicking height"

Fig.6

Result of evaporation capacity"

Fig.7

Result of evaporation rate"

Fig.8

Result of water vapor permeability testing"

[1] 隋倩. 导湿排汗针织面料的开发与性能研究[D]. 青岛: 青岛大学, 2018:1-3.
SUI Qian. Research on the development and performance of moisture wicking knitted fabric[D]. Qingdao: Qingdao University, 2018:1-3.
[2] 伍剑英. 运动服装面料发展现状研究[J]. 西部皮革, 2021, 43(11):139-140.
WU Jianying. Research on the development status of sports apparel fabric[J]. West Leather, 2021, 43(11):139-140.
[3] 滕启跃. 兰精天丝又出新纤维, 专攻针织面料[J]. 中国纤检, 2015(9):32-33.
TENG Qiyue. Lenzing promotes new fiber used for knitted fabric[J]. China Fiber Inspection, 2015(9):32-33.
[4] 刘昀庭, 张红霞, 贺荣, 等. 导水型再生涤纶织物的制备及其性能[J]. 纺织学报, 2016, 37(4): 96-100.
LIU Yunting, ZHANG Hongxia, HE Rong, et al. Preparation and performance of moisture wicking recycled polyester fabric[J]. Journal of Textile Research, 2016, 37(4): 96-100.
[5] 王怀峰, 杨启东, 何国英. 轻质保暖高针距针织双面绒面料的开发[J]. 针织工业, 2019(8):7-9.
WANG Huaifeng, YANG Qidong, HE Guoying. Development of fine gauge light weight double-sided suede fabric[J]. Knitting Industries, 2019(8):7-9.
[6] TROYNIKOV O, WARDININGSIH W. Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer[J]. Textile Research Journal, 2011, 81(6):621-631.
doi: 10.1177/0040517510392461
[7] 王伟, 黄晨, 靳向煜. 单向导湿织物的研究现状及进展[J]. 纺织学报, 2016, 37(5):167-172.
WANG Wei, HUANG Chen, JIN Xiangyu. Development of unidirectional water-transfer fabrics[J]. Journal of Textile Research, 2016, 37(5):167-172.
[8] 翟孝瑜. 导湿快干针织运动面料的研究与开发[D]. 苏州: 苏州大学, 2007:30-32.
ZHAI Xiaoyu. Study & development of knitting sport-wear fabrics with moisture-transfer and fast drying properties[D]. Suzhou: Soochow University, 2007:30-32.
[9] MANSHAHIA M, DAS A. Moisture management of high active sportswear[J]. Fibers and Polymers, 2014, 15(6): 1221-1229.
doi: 10.1007/s12221-014-1221-9
[10] 蒋叶群, 孙振波, 王建伟, 等. 吸湿排汗纤维研究[J]. 纺织报告, 2020(3): 21-23.
JIANG Yequn, SUN Zhenbo, WANG Jianwei, et al. Research on moisture absorption and sweat release fibers[J]. Textile Reports, 2020(3): 21-23.
[11] GUAN X, WANG X, HUANG Y, et al. Smart textiles with janus wetting and wicking properties fabricated by graphene oxide coatings[J]. Advanced Materials Interfaces, 2021. DOI: 10.1002/admi.202001427.
doi: 10.1002/admi.202001427
[12] 江燕婷, 严庆帅, 辛斌杰, 等. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(5):51-58.
JIANG Yanting, YAN Qingshuai, XIN Binjie, et al. Comparative study on testing methods for unidirectional water transport in fabrics[J]. Journal of Textile Research, 2021, 42(5):51-58.
doi: 10.1177/004051757204200109
[13] 杨雯静, 沈艳琴, 开吴珍, 等. 纺织品吸湿速干性能评价标准的分析与建议[J]. 纺织高校基础科学学报, 2019, 32(4):345-350.
YANG Wenjing, SHEN Yanqin, KAI Wuzhen, et al. Analysis and suggestions on eval uation criteria of hygroscopicity and fast-drying properties of textiles[J]. Basic Sciences Journal of Textile Universities, 2019, 32(4): 345-350.
[14] 王雪, 李娜娜, 徐密, 等. 导湿凉感织物结构设计与性能测试[J]. 针织工业, 2021(1):16-20.
WANG Xue, LI Nana, XU Mi, et al. Structural design and performance analysis of moisture transfer cool fabric[J]. Knitting Industries, 2021(1):16-20.
[15] 王啟红. Sorona长丝复合纱开发及性能研究[D]. 上海: 东华大学, 2019:4-7.
WANG Qihong. The development and properties of sorona filament composite yarns[D]. Shanghai: Donghua University, 2019:4-7.
[16] 颜奥林, 王鸿博, 杜金梅, 等. 纤维素纤维的种类对织物热湿舒适性的影响[J]. 丝绸, 2020, 57(9):17-21.
YAN Aolin, WANG Hongbo, DU Jinmei, et al. Effects of cellulose fiber types on the thermal and moisture comfort of fabrics[J]. Journal of Silk, 2020, 57(9):17-21.
[17] 廖师琴. 仿生树形针织面料吸湿快干性能研究[J]. 上海纺织科技, 2019, 47(2):26-28.
LIAO Shiqin. Property of moisture absorbent and fast drying of bionic tree knitted fabric[J]. Shanghai Textile Science & Technology, 2019, 47(2):26-28.
[18] 刘昀庭. 基于环保型再生聚酯纤维的吸湿速干纺织品研究与开发[D]. 杭州: 浙江理工大学, 2015:31-35.
LIU Yunting. Research and development of moisture quick-drying textile fabrics based on environmentally friendly recycled polyester fiber[D]. Hangzhou: Zhejiang Sci-tech University, 2015:31-35.
[19] 张华, 张杰, 高燕. 液氨处理对锦纶/棉混纺织物性能的影响[J]. 纺织学报, 2021, 42(6):128-132.
ZHANG Hua, ZHANG Jie, GAO Yan. Influence of liquid ammonia treatment on properties of polyamide/cotton blended fabrics[J]. Journal of Textile Research, 2021, 42(6):128-132.
[20] 张义男, 杨启东, 夏磊, 等. 羊毛与涤纶交织导湿快干针织面料的开发[J]. 针织工业, 2019(1):1-3.
ZHANG Yinan, YANG Qidong, XIA Lei, et al. Development of wool and polyester interknitted fabric with moisture-transfer and quick drying[J]. Knitting Industries, 2019(1):1-3.
[21] 孟沙沙. 凉爽型羊毛针织产品的开发与性能研究[D]. 上海: 东华大学, 2019:50-52.
MENG Shasha. Development and performance of cool wool knitting products[D]. Shanghai: Donghua University, 2019:50-52.
[22] 范天琪. 全棉吸湿快干牛仔布制备方法的研究[D]. 上海: 东华大学, 2021:17-20.
FAN Tianqi. Research on preparation of moisture absorption and quick drying cotton denim fabric[D]. Shanghai: Donghua University, 2021:17-20.
[1] LI Ningning, ZHANG Zhaohua, XU Suhong, ZHENG Ziyi, LI Xiaoyu. Distribution characteristics of local skin moisture sensitivity of human in thermal environment [J]. Journal of Textile Research, 2022, 43(09): 182-187.
[2] WANG Chenlu, MA Jinxing, YANG Yaqing, HAN Xiao, HONG Jianhan, ZHAN Haihua, YANG Shiqian, YAO Shaofang, LIU Jiangqiaona. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 113-118.
[3] DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73.
[4] QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66.
[5] RU Xin, ZHU Wanzhen, SHI Weimin, PENG Laihu. Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution [J]. Journal of Textile Research, 2022, 43(06): 63-69.
[6] YANG Liu, LI Yujia, ZHANG Xin, HE Wenjing, TONG Shenghao, MA Lei, ZHANG Yi, ZHANG Ruiyun. Effect of tightness of colored knitted fabrics on color prediction [J]. Journal of Textile Research, 2022, 43(05): 104-108.
[7] WANG Jianping, MIAO Mingzhu, SHEN Deyao, YAO Xiaofeng. Development and performance evaluation of knitted fabric with bionic bird feather structure [J]. Journal of Textile Research, 2022, 43(04): 55-61.
[8] YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131.
[9] CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69.
[10] YUAN Luning, WANG Jianping, ZHANG Bingjie, ZHANG Yuting, YAO Xiaofeng. Topological optimization design of dynamic moisture and temperature control for three dimensional knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 70-75.
[11] LI Yifei, ZHENG Min, CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis [J]. Journal of Textile Research, 2021, 42(06): 120-127.
[12] WANG Li, ZHANG Bingjie, WANG Jianping, LIU Li, YANG Yalan, YAO Xiaofeng, LI Qianwen, LU You. Development and performance evaluation of bionic knitted winter sports fabrics [J]. Journal of Textile Research, 2021, 42(05): 66-72.
[13] HU Xudong, SONG Yanfeng, RU Xin, PENG Laihu. Modeling and loop length reverse design for reducing diameter tubular weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(04): 80-84.
[14] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[15] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!