Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 74-79.doi: 10.13475/j.fzxb.20210908806

• Textile Engineering • Previous Articles     Next Articles

Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn

MIN Xiaobao1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk(Suzhou), Suzhou, Jiangsu 215123, China
  • Received:2021-09-26 Revised:2021-11-01 Online:2022-01-15 Published:2022-01-28
  • Contact: PAN Zhijuan E-mail:zhjpan@suda.edu.cn

Abstract:

Pineapple leaf fibers are thick, long, straight, and with branches on the surface, leading to poor quality of pure spun yarn. In order to improve its spinnability, the silk spinning system was employed to blend pineapple leaf fiber with some biomass fibers to prepare 16.7 tex×2 two-component yarns and 14.3 tex×2 three-component yarns, the selected biomass fibers including spun silk, wool, chitosan fiber, Lyocell fiber and polylactic acid (PLA) fiber. The mechanical properties, evenness and hairiness of the yarns were evaluated, and the results show that the spun yarns have high breaking strength, good evenness and low hairiness, which can be used to develop medium to high grade woven fabrics and can be applied to clothing making. Among the two-component blended yarns, the performance of pineapple leaf fiber/spun silk (mass ratio:85∶15) is the best, with breaking strength being(21.9±2.3)cN/tex, the hairiness value 3.61 mm/cm, and the evenness CV value 18.05%. Among the three-component blended yarns, the performance of pineapple leaf fiber/spun silk/Lyocell fiber (mass ratio:50∶30∶20) is the best, whose breaking strength is(19.9±1.3)cN/tex, the hairiness value 3.26 mm/cm, and the evenness CV value 14.03%.

Key words: pineapple leaf fiber, silk spinning system, multi-component blended yarn, mechanical property, evenness, hairiness

CLC Number: 

  • TS106.5

Tab.1

Fiber physical performance index"

纤维种类 线密度/
dtex
平均长
度/mm
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
回潮
率/%
菠萝叶纤维 7.1 109 6.8 4.4 7.6
羊毛 1.6 60 4.0 33.6 15.0
绢丝 1.4 80 3.2 20.0 11.0
Lyocell纤维 1.7 50 4.3 15.0 13.0
PLA纤维 1.5 38 3.5 36.3 0.5
壳聚糖纤维 1.3 38 2.4 19.2 12.0

Fig.1

Morphological structure of pineapple fiber. (a)Cross-sectional shape(×1 500);(b)Surface morphology(×500)"

Tab.2

Specification design of pineapple leaf fiber blended yarn"

纱线成分 纱线代号 混纺质量比 设计线密度
菠萝叶纤维/绢丝 P/S 85:15 16.7 tex×2
菠萝叶纤维/羊毛 P/W 85:15 16.7 tex×2
菠萝叶纤维/壳聚糖纤维 P/C 85:15 16.7 tex×2
菠萝叶纤维/PLA纤维 P/P 85:15 16.7 tex×2
菠萝叶纤维/Lyocell纤维 P/L 85:15 16.7 tex×2
菠萝叶纤维/绢丝/PLA纤维 P/S/P 50:30:20 14.3 tex×2
菠萝叶纤维/羊毛/PLA纤维 P/W/P 50:30:20 14.3 tex×2
菠萝叶纤维/羊毛/Lyocell纤维 P/W/L 50:30:20 14.3 tex×2
菠萝叶纤维/绢丝/Lyocell纤维 P/S/L 50:30:20 14.3 tex×2

Tab.3

Density and twist of pineapple leaf fiber blended yarn"

纱线
代号
百米纱线
质量/g
实际线
密度/tex
百米质量
偏差/%
捻度/
(捻·m-1)
P/S 3.30 16.5×2 -1.2 520
P/W 3.28 16.4×2 -1.8 498
P/C 3.25 16.3×2 -2.7 512
P/P 3.24 16.2×2 -3.0 504
P/L 3.29 16.5×2 -1.5 523
P/S/P 2.78 13.9×2 -2.8 490
P/W/P 2.82 14.1×2 -1.4 500
P/W/L 2.79 13.9×2 -2.4 517
P/S/L 2.83 14.2×2 -1.0 524

Fig.2

Unevenness of pineapple leaf fiber blended yarn"

Tab.4

Density and twist of pineapple leaf fiber blended yarn"

纱线
代号
细节/(个·km-1) 粗节/(个·km-1) 棉结/(个·km-1)
-40% -50% +35% +50% +200% +280%
P/S 660.0 40.0 740.0 300.0 740.0 380.0
P/W 1 300.0 280.0 1000.0 300.0 620.0 22.0
P/C 680.0 160.0 720.0 240.0 220.0 80.0
P/P 1 200.0 200.0 1 687.0 613.3 620.0 253.3
P/L 826.7 100.0 913.0 366.7 466.7 213.3
P/S/P 180.0 13.3 555.3 146.7 126.7 40.0
P/W/P 1 027.0 126.7 1 353.0 573.3 346.7 186.7
P/W/L 480.0 6.7 820.0 220.0 140.0 40.0
P/S/L 60.0 0.0 493.3 166.7 120.0 46.7

Fig.3

Hairiness index of pineapple leaf fiber blended yarn. (a) Hairiness; (b) Hairiness standard deviation"

Tab.5

Mechanical properties of pineapple leaf fiber blended yarn"

纱线代号 断裂伸长率/% 断裂强度/
(cN·tex-1)
初始模量/
(cN·tex-1)
P/S 2.3±0.3 21.8±2.3 782.4±134.8
P/W 2.6±0.3 17.2±3.0 309.5±47.3
P/C 2.1±0.2 21.5±1.5 1012.8±47.7
P/P 2.3±0.2 18.3±1.9 664.8±71.4
P/L 2.4±0.2 21.8±3.6 754.7±60.4
P/S/P 3.1±0.3 16.4±1.2 366.6±62.9
P/W/P 2.6±0.3 9.5±1.5 172.5±57.7
P/W/L 2.9±0.2 12.9±1.4 271.7±43.1
P/S/L 4.1±0.3 19.9±1.3 337.8±49.6

Fig.4

Stress-strain curve of pineapple leaf fiber blended yarn. (a)Two component; (b)Three components"

Fig.5

Pineapple leaf fiber blended yarn moisture regain"

[1] 付少举, 张佩华. 智能绿色纺织新型原料的开发现状及趋势[J]. 针织工业, 2020(7): 10-15.
FU Shaoju, ZHANG Peihua. Development situation and trend of new intelligent green textile materials[J]. Knitting Industries, 2020(7): 10-15.
[2] 张慧敏. 菠萝叶纤维抗菌性能及机理研究[D]. 青岛:青岛大学, 2016:1-12.
ZHANG Huimin. Research on antibacterial properties and mechanism of pineapple leaf fiber[D]. Qingdao:Qingdao University, 2016:1-12.
[3] 何俊燕, 李明福, 张劲, 等. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(5): 1-6.
HE Junyan, LI Mingfu, ZHANG Jin, et al. Structure and formaldehyde adsorption properties of modified pineapple leaf fiber[J]. Journal of Textile Research, 2019, 40(5): 1-6.
doi: 10.1177/004051757004000101
[4] 陈嘉琳, 李端鑫, 于洋, 等. 菠萝纤维的制备与表征[J]. 棉纺织技术, 2021, 49(2): 31-35.
CHEN Jialin, LI Duanxin, YU Yang, et al. Preparation and evaluation of pineapple fiber[J]. Cotton Textile Technology, 2021, 49(2): 31-35.
[5] 顾东雅, 王祥荣. 菠萝纤维的研究进展[J]. 现代丝绸科学与技术, 2011, 26(3): 115-117.
GU Dongya, WANG Xiangrong. Research progress of pineapple fiber[J]. Modern Silk Science & Technology, 2011, 26(3): 115-117.
[6] 欧忠庆, 张园, 李明福, 等. 菠萝叶收获和纤维提取联合收割机的设计与试验[J]. 农机化研究, 2021, 43(3): 175-181.
OU Zhongqing, ZHANG Yuan, LI Mingfu, et al. Design and experiment of a combine harvester for pineapple leaf harvesting and fiber extraction[J]. Journal of Agricultural Mechanization Research, 2021, 43(3): 175-181.
[7] 汪乐, 高可, 刘雪婷, 等. 菠萝叶纤维物理生物联合脱胶工艺探讨及其性能分析[J]. 纺织科学与工程学报, 2018, 35(2): 60-64.
WANG Le, GAO Ke, LIU Xueting, et al. Discussion on the physical and biological combined degumming process of pineapple leaf fiber and its performance analysis[J]. Journal of Textile Science and Engineering, 2018, 35(2): 60-64.
[8] 徐颖, 商大伟, 张玉清. 菠萝叶纤维三组分混纺纱的纺制[J]. 棉纺织技术, 2016, 44(12): 54-56.
XU Ying, SHANG Dawei, ZHANG Yuqing. Spining of three components blended yarn with pineapple leaf fiber[J]. Cotton Textile Technology, 2016, 44(12): 54-56.
[9] 刘德驹, 顾东雅, 封怀兵, 等. 生理性户外运动服装针织面料的开发[J]. 轻纺工业与技术, 2017, 46(3): 9-10.
LIU Deju, GU Dongya, FENG Huaibing, et al. Development of knitted fabrics for physiological outdoor sports clothing[J]. Light and Textile Industry and Technology, 2017, 46(3): 9-10.
[10] 顾东雅, 谢继田. 菠萝纤维/棉混纺针织物的无盐无碱染色[J]. 印染, 2018, 44(17): 20-22.
GU Dongya, XIE Jitian. Salt-and alkali-free dyeing of pineapple fiber/cotton knitted fabric[J]. China Dyeing & Finishing, 2018, 44(17): 20-22.
[11] 斯叶华. Lyocell纤维发展趋势[J]. 上海纺织科技, 2017, 45(5): 8-10.
SI Yehua. Development tendency of Lyocell fiber[J]. Shanghai Textile Science & Technology, 2017, 45(5):8-10.
[12] 白琼琼, 文美莲, 李增俊, 等. 聚乳酸纤维的国内外研发现状及发展方向[J]. 毛纺科技, 2017, 45(2): 64-68.
BAI Qiongqiong, WEN Meilian, LI Zengjun, et al. Research status and development direction of polylactic acid fiber at home and abroad[J]. Wool Textile Journal, 2017, 45(2): 64-68.
[13] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(5): 170-176.
QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers[J]. Journal of Textile Research, 2019, 40(5): 170-176.
[1] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[2] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[3] HE Junyan, LI Mingfu, LIAN Wenwei, HUANG Tao, ZHANG Jin. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber [J]. Journal of Textile Research, 2021, 42(09): 83-89.
[4] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[5] HE Yaqin, BI Xuerong, QIAN Xixi, RUAN Jun, YU Chongwen. Simulation study on effect of drafting on sliver unevenness [J]. Journal of Textile Research, 2021, 42(06): 85-90.
[6] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[7] ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79.
[8] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[9] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[10] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[11] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[12] MA Shasha, WANG Junbo, LUO Qian, SI Fang, YANG Min'ge, CHEN Ningbo, ZHANG Xiaofeng, LI Bo. Effect of nickel-phosphorus-nano-SiC-polytetrafluoroethylene electroless composite plating on lifetime of traveller for yarn spinning [J]. Journal of Textile Research, 2020, 41(12): 151-156.
[13] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[14] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[15] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .