Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 131-140.doi: 10.13475/j.fzxb.20210909010

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Trend of environmental governance in textile industry aiming at carbon neutrality and emission reduction

TANG Zhengkun1,2, LIU Yanbin3, XU Chenye1,2, LIU Yanbiao1,2, SHEN Chensi1,2, LI Fang1,2(), WANG Huaping4   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,Donghua University, Shanghai 201620, China
    3. AIEN Institute, Shanghai Ocean University, Shanghai 201306, China
    4. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2021-09-26 Revised:2021-11-04 Online:2022-01-15 Published:2022-01-28
  • Contact: LI Fang E-mail:lifang@dhu.edu.cn

Abstract:

In the face of global fossil energy tightening, excess greenhouse gas emissions and severe water pollution control situation, reducing pollution and carbon emission is extremely urgent. As a traditional pillar industry in China, the development of textile industry constitutes as an important route for achieving the low-carbon green industry. In this review, this paper firstly analyzed the units of energy consumption and pollution emissions from the whole production chains. The main links of carbon emission and potentials for carbon reduction in the process of textile raw material, dyeing and finishing and finished product were dissected in details, and the cutting-edge technologies for the carbon reduction pollution control and resource recycling were summarized. Finally, based on exemplar case of Binhai Industrial Park in textile industry cluster in Keqiao District, Shaoxing City, the positive effect of industrial agglomeration on industrial carbon reduction was discussed from the perspective of environmental management. The future goals of pollution control and carbon reduction can only be achieved by the improvements in system, technology and management.

Key words: textile industry, carbon neutralization, pollution reduction, resource recovery, management system, textile industry cluster

CLC Number: 

  • TS195

Tab.1

Energy consumption and pollution discharge in production of different chemical fiber raw materials"

产品
名称
能源消耗量 污染物产生量
新鲜
水/t
原料/
kg
综合能耗
标准煤/kg
废水/
m3
COD产生
量/kg
废气/
kg
氨纶 20.0 1 100.0 1 750 12.0 16.00 8
锦纶
高强丝
2.8 1.0 280 1.2 0.80
锦纶
切片
3.6 1.0 180 0.9 2.25
短纤维 2.2 1 025.0 215 1.6 2.30

Tab.2

Energy consumption and pollution discharge of natural fiber production"

产品
名称
工序 能源消耗量 污染物产生量
用电量/
(kW·h)
综合能耗
标准煤/kg
废水/
m3
COD产生
[10]/kg
毛纤维[6] 洗毛 500 610 44 181.3
碳化 7.3
蚕丝[7,8] 缫丝 14 607 750 210.5
绢丝加工 9 918.5
麻纤维[9] 亚麻脱胶 670 272 189.8
苎麻脱胶 319.8

Tab.3

Energy consumption and pollution discharge of main products in dyeing and finishing"

产品名称 加工原料 能源消耗量 污染物产生量
新鲜水/t 电/(kW·h) 综合能耗标准煤/kg 废水/m3 COD产生量/kg
机织物 棉织物 1.8 35 37 1.5 4.8
合成纤维织物 1.6 40 42 1.3 3.2
混纺织物 2.4 47 45 2.2 7.4
针织物 棉织物 90.0 1 200 1 200 87.0 69.6
合成纤维织物 80.0 1 300 1 300 78.0 74.1
混纺织物 120.0 1 400 1 600 117.0 111.2
毛织物 散纤维、毛纱 130.0 1 500 1 400 110.0 143
精梳毛织物 20.0 210 138 17.0 22.1
粗梳毛织物 23.0 280 193 20.0 26.0
丝织物 3.0 28 40 2.7 3.0
纱线染色 90.0 1 000 1 050 79.0 76.6
合成纤维 80.0 1 400 1 470 70.4 56.3

Tab.4

Effects of Fenton like technologies on printing and dyeing wastewater treatment"

反应体系 最佳反应条件 脱色
率/%
pH值 H2O2用量/
(mL·L-1)
催化剂添加
量/(g·L-1)
负载Bi改性硫铁矿[12] 3.0 0.05 2 000 90.1
磁性Na-P型沸石[13] 3.2 0.05 4 000 96.2
生物炭/H2 O 2 [ 14 ] 3.0 0.1 90 99.99

Tab.5

Treatment effect of printing and dyeing wastewater by ozone catalytic oxidation technology"

工艺 最佳反应条件 COD
去除率/%
催化剂添加量/
(g·L-1)
pH值
催化臭氧氧化
(MnFe2O4/CA)[15]
1.00 75
臭氧氧化[16] 13.0 62
催化臭氧氧化
(C-MgO-EMP)[17]
0.23 4.3 93

Tab.6

Effect of electrochemical treatment of printing and dyeing wastewater"

材质 最佳反应条件 最佳效果
聚苯胺-碳纳米管 (阳极)[21,22] 2.5 kW/m3 通量恢复:84.1% (<0.2 s),93.0% (20 min)
碳纳米管/氧化石墨烯/聚苯胺 (阳极)[23] 6.0 W/m3 通量恢复: 96.0% (12 h)
亚氧化钛(阳极)[24] 8.0 mA/cm2 亚甲基蓝去除率99.6%(105 min)
Ni掺杂Ti/SnO2-Sb(阳极)[25] 20 mA/cm2 COD去除率100%(30 min)

Tab.7

Effect of photocatalytic treatment of printing and dyeing wastewater"

光催化材料 改性方法 最佳反应条件 最佳效果
催化剂添加量/(g·L-1) 光源
Fe2+-TiO2 元素掺杂 0.04 14 W紫外光 甲基蓝降解率为99%(180 min)[28]
Pt-TiO2 元素掺杂 1.00 300~500 nm紫外可见光 罗丹明B降解率为99%(90 min)[29]
g-C3N4/TiO2 半导体复合 0.50 300~500 nm紫外可见光 亚甲基蓝降解率为99.64%(180 min)[30]
MB-Cu-MOF 元素掺杂 0.25 300 W氙灯模拟可见光 活性深蓝K-R降解率为88.4%[31]
TiO2/BaSb2O6 半导体复合 1.00 150 W氙灯模拟紫外可见光 罗丹明B的降解率为94.46%(100 min)[32]

Tab.8

Effects of different processes on textile waste gas treatment"

工艺 技术 最佳反应条件 VOC去除能力
吸附 微介孔活性炭 温度为298 K 对苯、甲醇、正己烷和环己烷的吸附能力分别为1 846、1 777、1 510、1 766 mg/g[34]
吸收 四烷基季胺氨基酸离子液体 60%(MEDA)与([N2222][L-Ala])的质量比为1:0.2 对CO2的吸收量最高值为0.41 mol/mol[35]
生物法 生物滤池 温度在20~30 ℃之间,相对湿度在41%~80%之间,空床停留时间为59 s VOCs去除率达90%左右[36]

Tab.9

Polyester fiber separation and regeneration technology in different textiles"

废旧纺织品种类 工艺 回收效果
棉/PET混纺织物 [DBNH][OAC]溶剂+干式喷气湿法纺丝 再生PET组分纤维素含量低(1.7~2.5%)[38]
聚酯类废旧纺织品 熔融直接纺丝 再生聚酯短纤维符合FZ/T 52010—2014[40]
涤纶织物 乙二醇醇解法+皮芯复合纺丝 再生纤维符合FZ/T 52010—2014《再生涤纶短纤维》[39]
水热法 聚酰胺树脂的实际回收率为84.95%[41]
聚酯纤维织物 热熔法 再生材料主成分未改变,性能有一定程度降低[42]

Fig.1

Separation and recovery of dyeing salt for comprehensive treatment of cotton dyeing wastewater"

Tab.10

Application of different membrane separation technologies in printing and dyeing wastewater reuse"

废水来源 工艺 回用率/% 单位废水处理
成本/(元·t-1)
好氧池出水 MBR+反渗透[46] 60 2.300
二沉池出水 超滤+反渗透[47] 70 3.305
水解酸化池出水 MBR+反渗透[48] 70 2.410
二沉池出水 超滤+反渗透[49] 70 2.500

Tab.11

Application of different waste heat recovery technologies in textile printing and dyeing enterprises"

余热回收技术 经济效益 环境效益
“气-气”换热技术 总体经济效益为39.27万元/a 节约标煤401.40 t/a[53]
螺线管式换热器 节约18万元/a 节约标煤241.92 t/a[54]
热管式余热蒸汽发生器 实现直接经济效益837.4万元/a 节约标煤1.15万t/a[55]
[1] SAWYER J S. Man-made carbon dioxide and the "greenhouse" effect[J]. Nature, 1972, 239(5366): 23-26.
doi: 10.1038/239023a0
[2] MITCHELL J F B, JOHNS T C, GREGORY J M, et al. Climate response to increasing levels of greenhouse gases and sulphate aerosols[J]. Nature, 1995, 376(1), 501-504.
doi: 10.1038/376501a0
[3] JIN L, ID K D, XU T. What is the relationship between technological innovation and energy consumption empirical analysis based on provincial panel data from China[J]. Sustainability, 2018, 10(1): 145-160.
doi: 10.3390/su10010145
[4] ZHAO H, LIN B. Assessing the energy productivity of China's textile industry under carbon emission constraints[J]. Journal of Cleaner Production, 2019, 228(10): 197-207.
doi: 10.1016/j.jclepro.2019.03.327
[5] 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL].(2020-06-08)[2021-12-08]. https://sthjj.hebi.gov.cn/hbsthjj/ztzl6/hbsdecqgwrypc/3358442/index.html.
Ministry of Ecological Environment of the People's Republic of China, National Bureau of Statistics, Ministry of Agriculture and Rural Areas of the People's Republic of China. Bulletin of the second national survey of pollution sources[EB/OL].(2020-06-08)[2021-12-08]. https://sthjj.hebi.gov.cn/hbsthjj/ztzl6/hbsdecqgwrypc/3358442/index.html.
[6] 胡柯. 纺织企业生产过程关键环节碳排放研究[D]. 西安: 西安工程大学, 2018: 21-22.
HU Ke. Research on carbon emission of key links in the production process of textile enterprises[D]. Xi'an: Xi'an Polytechnic University, 2018: 21-22.
[7] 陈勇. 缫丝行业清洁生产工艺技术思路探讨[D]. 南京:南京农业大学, 2005: 16-17.
CHEN Yong. Discussion on cleaner production technology in silk reeling industry[D]. Nanjing: Nanjing Agricultural University, 2005: 16-17.
[8] 王家德, 朱征豪. 缫丝行业废水排放特点及其防治对策[J]. 环境污染与防治, 2002, 24(4): 216-222.
WANG Jiade, ZHU Zhenghao. Discharge characteristics and control countermeasures of wastewater in silk reeling industry[J]. Environmental Pollution and Control, 2002, 24(4): 216-222.
[9] FAN P, HE F, YANG Y, et al. In-situ microbial degumming technology with bacillus sp. HG-28 for industrial production of ramie fibers[J]. Biochemical Engineering Journal, 2015, 97(15): 50-58.
doi: 10.1016/j.bej.2014.12.010
[10] SHAMSUZZAMAN M, KASHEM M A, MUHAMMAD SAYEM A S, et al. Quantifying environmental sustainability of denim garments washing factories through effluent analysis: a case study in Bangladesh[J]. Journal of Cleaner Production, 2021, 290(44): 125-740.
[11] YE Z, PADILLA J A, XURIGUERA E, et al. A Highly stable metal-organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-fenton treatment: validation in wastewater at mild pH[J]. Environmental Science & Technology, 2020, 54(7): 4664-4674.
doi: 10.1021/acs.est.9b07604
[12] 胡银. 硫铁矿烧渣催化类Fenton深度处理印染废水研究[D]. 上海: 东华大学, 2014: 57-60.
HU Yin. Study on advanced treatment of printing and dyeing wastewater with pyrite cinder catalytic Fenton[D]. Shanghai: Donghua University, 2014: 57-60.
[13] 韩智超. 锌渣-粉煤灰基磁性沸石的制备及催化处理印染废水[D]. 西安: 西安建筑科技大学, 2020: 34-35.
HAN Zhichao. Preparation of zinc slag fly ash based magnetic zeolite and catalytic treatment of printing and dyeing wastewater [D]. Xi'an: Xi'an University of Architecture and Technology, 2020: 34-35.
[14] 陈晶晶. 生物炭/H2O2体系类芬顿方法降解水中亚甲基兰的效果研究[D]. 西安: 西北大学, 2019: 59-60.
CHEN Jingjing. Study on the degradation of methylene blue in water by Fenton like method in biochar/H2O2 system[D]. Xi'an: Northwest University, 2019: 59-60.
[15] HU E, SHANG S, CHIU K L. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling[J]. Molecules, 2019, 24(15): 2755-2776.
doi: 10.3390/molecules24152755
[16] DIAS N C, BASSIN J P, SAN'ANNA G L, et al. Ozonation of the dye Reactive Red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways[J]. International Biodeterioration & Biodegradation, 2019, 144(15): 104-742.
[17] ASGARI G, FARAD MA L J, NASAB H Z, et al. Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder[J]. Advanced Powder Technology, 2019, 30(7): 1297-1311.
doi: 10.1016/j.apt.2019.04.003
[18] BRILLAS E, SIRE S I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 65-70.
[19] RODRIGUEZ-NARVAEZ O M, PICOS A R, BRAVO-YUMI N, et al. Electrochemical oxidation technology to treat textile wastewaters[J]. Current Opinion in Electrochemistry, 2021, 29(5): 100-806.
[20] STUPAR S L, BRANIMIR G N, ONJIA A E, et al. Direct and indirect electrochemical degradation of Acid Blue 111 using IrOx anode[J]. International Journal of Electrochemical Science, 2017, 12(9): 8564-8577.
[21] DUAN W, RONEN A, WALKER S, et al. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22574-22584.
[22] LIU Y, LIU F, DING N, et al. Recent advances on electroactive CNT-based membranes for environmental applications: the perfect match of electrochemistry and membrane separation[J]. Chinese Chemical Letters, 2020, 31(10): 2539-2548.
doi: 10.1016/j.cclet.2020.03.011
[23] WEI G, DONG J, BAI J, et al. Structurally stable, antifouling, and easily renewable reduced graphene oxide membrane with a carbon nanotube protective layer[J]. Environmental Science & Technology, 2019, 53(20): 11896-11903.
doi: 10.1021/acs.est.9b03129
[24] 王愚. 亚氧化钛电化学阳极氧化降解印染废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 56-57.
WANG Yu. Study on degradation of printing and dyeing wastewater by electrochemical anodic oxidation of titanium dioxide[D]. Harbin: Harbin Institute of Technology, 2016: 56-57.
[25] 肖丹. 采用Ti/SnO2-Sb-Ni阳极和空气阴极电化学氧化技术处理实际工业废水[D]. 杭州: 浙江大学, 2020: 47-49.
XIAO Dan. Ti/SnO2-Sb-Ni anode and air cathode electrochemical oxidation technology for the treatment of practical industrial wastewater[D]. Hangzhou: Zhejiang University, 2020: 47-49.
[26] 陆同庆, 龙家杰, 卢毅. 分散染料的纳米TiO2光催化脱色[J]. 印染, 2010, 36(3): 11-15.
LU Tongqing, LONG Jiajie, LU Yi. Nano TiO2 photocatalytic decolorization of disperse dyes[J]. China Dyeing & Finishing, 2010, 36(3): 11-15.
[27] MENG N C, JIN B, CHOW C, et al. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010, 44(10): 2997-3027.
doi: 10.1016/j.watres.2010.02.039
[28] MA C M, LIN Y J, SHIUE R W, et al. Dyes degradation with Fe-doped titanium nanotube photocatalysts prepared from spend steel slag[J]. International Journal of Photoenergy, 2013, 2013(7): 350-698.
[29] ALAMELU K, JAFFAR A. TiO2-Pt composite photocatalyst for photodegradation and chemical reduction of recalcitrant organic pollutants[J]. Journal of Environmental Chemical Engineering, 2018, 8(6): 2213-3437.
[30] 张文博. g-C3N4/TiO2复合光催化剂的制备与酸化改性研究[D]. 武汉: 武汉大学, 2018: 46-47.
ZHANG Wenbo. Preparation and acidification modification of g-C3N4/TiO2 composite photocatalys[D]. Wuhan: Wuhan University, 2018: 46-47.
[31] 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(415): 93-99.
LI Qing, GUAN Binbin, WANG Ya, et al. High efficiency photocatalytic degradation of Reactive Dark Blue K-R by photosensitizer sensitized Cu organic skeleton[J]. Journal of Textile Research, 2020, 41(415): 93-99.
doi: 10.1177/004051757104100201
[32] 韩秀萍. 锑基或钛基光催化剂制备及其对水环境中抗生素的降解研究[D]. 西安: 西安理工大学, 2021: 74-75.
HAN Xiuping. Preparation of antimony based or titanium based photocatalysts and their degradation of antibiotics in aqueous environment[D]. Xi'an: Xi'an University of Technology, 2021: 74-75.
[33] 王岩, 秦修远, 王然, 等. 纺织印染工业VOCs污染问题及治理技术展望[J]. 印染助剂, 2017, 34(7): 6-10.
WANG Yan, QIN Xiuyuan, WANG Ran, et al. VOCs pollution in textile printing and dyeing industry and prospect of treatment technology[J]. Textile Auxiliaries, 2017, 34(7): 6-10.
[34] ZHANG Z, JIANG C, LI D, et al. Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs[J]. Carbon, 2020, 170(33): 567-579.
doi: 10.1016/j.carbon.2020.08.033
[35] 王冠楠. 离子液体酸性气体吸收剂的合成,表征及吸收性能研究[D]. 南京: 南京大学, 2011: 135-136.
WANG Guannan. Synthesis, characterization and absorption properties of ionic liquid acid gas absorbent[D]. Nanjing: Nanjing University, 2011: 135-136.
[36] YANG Z, LI J, LIU J, et al. Evaluation of a pilot-scale bio-trickling filter as a VOCs control technology for the chemical fibre wastewater treatment plant[J]. Journal of Environmental Management, 2019, 246(15): 71-76.
doi: 10.1016/j.jenvman.2019.05.102
[37] ZG A, ME B, HDLM A, et al. Circular recycling of polyester textile waste using a sustainable catalyst[J]. Journal of Cleaner Production, 2020, 238(14): 124-579.
[38] HASLINGER S, HUMMEL M, ANGHELSCU-HAKALA A, et al. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers[J]. Waste Management, 2019, 97(40): 88-96.
doi: 10.1016/j.wasman.2019.07.040
[39] 钱军, 王少博, 邢喜全, 等. 废旧涤纶织物醇解再生制备低熔点粘合纤维[J]. 合成纤维工业, 2016, 39(4): 45-48.
QIAN Jun, WANG Shaobo, XING Xiquan, et al. Preparation of low melting point adhesive fiber by alcoholysis and regeneration of waste polyester fabric[J]. China Synthetic Fiber Industry, 2016, 39(4): 45-48.
[40] 邢喜全, 钱军, 王方河, 等. 聚酯类废旧纺织品制备再生纤维工艺研究[J]. 纺织导报, 2017(8): 36-38.
XING Xiquan, QIAN Jun, WANG Fanghe, et al. Study on the preparation of recycled fiber from polyester waste textiles[J]. China Textile Leader, 2017(8): 36-38.
[41] 龚艳勃. 废旧涤棉混纺织物在水热条件下回收对苯二甲酸的研究[D]. 太原: 太原理工大学, 2016: 28-29.
GONG Yanbo. Study on the recovery of terephthalic acid from waste polyester cotton blended fabric under hydrothermal conditions[D]. Taiyuan: Taiyuan University of Technology, 2016: 28-29.
[42] 李静. 废旧涤纶面料再造在饰品设计中的应用[D]. 大连: 大连工业大学, 2018: 28-29.
LI Jing. Application of waste polyester fabric recycling in jewelry design[D]. Dalian: Dalian Polytechnic University, 2018: 28-29.
[43] 张奎, 袁慎峰, 尹红, 等. 络合萃取法预处理CLT酸生产废水研究[J]. 水处理技术, 2014, 40(1): 33-36.
ZHANG Kui, YUAN Shenfeng, YIN Hong, et al. Study on pretreatment of CLT acid production wastewater by complex extraction[J]. Technology of Water Treatment, 2014, 40(1): 33-36.
[44] 贾凡, 桂澄, 王赏, 等. 萃取法处理模拟拼色染料染色废水的研究[J]. 印染, 2018, 44(16): 14-18.
JIA Fan, GUI Cheng, WANG Shang, et al. Study on treatment of simulated color matching dye dyeing wastewater by extraction[J]. China Dyeing & Finishing, 2018, 44(16): 14-18.
[45] 李方, 唐政坤, 沈忱思, 等. 一种棉织物印染废水的综合处理方法: 201910828645.7[P]. 2019-09-03.
LI Fang, TANG Zhengkun, SHEN Chensi, et al. A comprehensive treatment method of cotton fabric printing and dyeing wastewater: 201910828645.7[P]. 2019-09-03.
[46] 郭海林, 周宇松, 李亮, 等. MBR+反渗透双膜法处理印染废水及其回用工程实例[J]. 水处理技术, 2016, 42(3): 132-135.
GUO Hailin, ZHOU Yusong, LI Liang, et al. Engineering example of printing and dyeing wastewater treatment and reuse by MBR+reverse osmosis double membrane method[J]. Technology of Water Treatment, 2016, 42(3): 132-135.
[47] 任亮. 水解-接触氧化-UF-RO工艺处理印染废水及水回用工程[J]. 水处理技术, 2012, 38(7): 119-121.
REN Liang. Treatment of printing and dyeing wastewater and water reuse project by hydrolysis contact oxidation UF-RO process[J]. Technology of Water Treatment, 2012, 38(7): 119-121.
[48] 李宇庆, 马楫, 宋小康, 等. 印染废水处理与回用技术应用研究[J]. 工业水处理, 2016, 36(4): 95-97.
LI Yuqing, MA Ji, SONG Xiaokang, et al. Research on application of printing and dyeing wastewater treatment and reuse technology[J]. Industrial Water Treatment, 2016, 36(4): 95-97.
[49] 阮慧敏, 沈江南, 阮水晶, 等. 集成膜分离技术处理印染废水工程实例及技术探讨[J]. 水处理技术, 2011, 37(8): 127-129.
RUAN Huimin, SHEN Jiangnan, RUAN Shuijing, et al. Engineering example and technical discussion of integrated membrane separation technology in the treatment of printing and dyeing wastewater[J]. Technology of Water Treatment, 2011, 37(8): 127-129.
[50] 曹浩淼. 浙江某印染企业废水余热利用系统设计及分析[D]. 上海: 东华大学, 2015: 51-54.
CAO Haomiao. Design and analysis of waste heat utilization system of wastewater in a printing and dyeing enterprise in Zhejiang[D]. Shanghai: Donghua University, 2015: 51-54.
[51] 拓炳旭. 印染厂废水余热回收系统研究[D]. 西安: 西安工程大学, 2017: 73-74.
TUO Bingxu. Research on waste heat recovery system of printing and dyeing plant[D]. Xi'an: Xi'an Polytechnic University, 2017: 73-74.
[52] 宋晨, 狄育慧, 郝振东, 等. 印染废水余热回收系统设计及节能环保性分析[J]. 制冷与空调(四川), 2020, 34(6): 744-747.
SONG Chen, DI Yuhui, HAO Zhendong, et al. Design of waste heat recovery system for printing and dyeing wastewater and analysis of energy conservation and environmental protection[J]. Refrigeration and Air Conditioning (Sichuan), 2020, 34(6): 744-747.
[53] 汤仪平. 定形机余热回收及其节能监测管理系统[J]. 机电技术, 2015, 6(6): 8-10.
TANG Yiping. Waste heat recovery and energy saving monitoring and management system of setting machine[J]. Electromechanical Technology, 2015, 6(6): 8-10.
[54] 冯玉报, 谢兆林, 冯雷, 等. LQJ系列废气余热回收装置在定形机上的应用[J]. 染整技术, 2013, 35(12): 50-52.
FENG Yubao, XIE Zhaolin, FENG Lei, et al. Application of LQJ series waste gas waste heat recovery device in setting machine[J]. Textile Dyeing and Finishing Journal, 2013, 35(12): 50-52.
[55] 魏爽, 李成钢. 盛虹清洁印染践行者[J]. 印染助剂, 2017, 34(12): 1-4.
WEI Shuang, LI Chenggang. Pioneer of "clean printing and dyeing" Shenghong[J]. Textile Auxiliaries, 2017, 34(12): 1-4.
[56] GUO Y, TIAN J, ZANG N, et al. The role of industrial parks in mitigating greenhouse gas emissions from China[J]. Environmental Science & Technology, 2018, 52(14): 7754-7762.
doi: 10.1021/acs.est.8b00537
[57] WEI C, XIAO L, YI Q, et al. Polycentric approach of wastewater governance in textile industrial parks: case study of local governance innovation in China[J]. Journal of Environmental Management, 2020, 280(15): 111-730.
[58] 徐忠良. 推进绍兴柯桥滨海工业区实施印染产业集聚升级工程的实践与思考[J]. 染整技术, 2016, 38(1): 1-5.
XU Zhongliang. Practice and thinking on promoting the implementation of printing and dyeing industry agglomeration and upgrading project in Shaoxing Keqiao Binhai Industrial Zone[J]. Textile Dyeing and Finishing Journal, 2016, 38(1): 1-5.
[59] 刘斯敖. 柯桥特色纺织产业集群与城镇化耦合联动发展研究[J]. 合作经济与科技, 2015, 5(9): 22-24.
LIU Siao. Research on the coupling and linkage development of Keqiao characteristic textile industry cluster and urbanization[J]. Co-operative Economy & Science, 2015, 5(9): 22-24.
[1] XIA Zhigang, XU Ao, WAN Youshun, WEI Jiang, ZHANG Huixia, TANG Jiandong, ZHENG Minbo, GUO Qinsheng, DING Cailing, YANG Shengming, XU Weilin. Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization [J]. Journal of Textile Research, 2022, 43(01): 58-66.
[2] ZHANG Yaopeng, SHEN Chensi, XU Chenye, LI Fang. Review on treatment technology for typical pollutants in textile industry [J]. Journal of Textile Research, 2021, 42(08): 24-33.
[3] . Key technology of warp knitting manufacture execution system based on internet of things [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 144-149.
[4] . Influence of polyamide fiber on morphology and properties of textile wasted rubber-hindered phenol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 72-77.
[5] . Motivation of textile industry transfer under context-structure-conduct-performance paradigm [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 156-161.
[6] . Zhejiang textile industry upgrading on industry chain and technology chain integration [J]. Journal of Textile Research, 2015, 36(06): 148-154.
[7] . Region correlation and spatial spillower effects of China's textile industry [J]. Journal of Textile Research, 2015, 36(03): 161-168.
[8] . Study on contributions of China's textile industry to national economic development [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 145-0.
[9] . Lean management of China' s textile industry based on new technical and managerial paradigm [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 135-0.
[10] . Empirical analysis of effect of scientific and texhnological advancement on export of textiles of China [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 143-146.
[11] . Research on Evaluation of the Acceptance Capability of Textile Industry Shift from the East Coast to the Six Provinces in Central China Based on Entropy Method [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 138-145.
[12] MA Shuzhong;HUANG Hui;GU Haiyan;JIANG Fuming. International marketing strategy of textile industry in Shaoxing and its impact on exportation efficiency [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 122-127.
[13] LI Yonggang;SHAO Jingfeng;ZHANG Huiwei;QIN Lanshuang. Development of data acquisition and management system of warping machine based on Distributed Control System mode [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 128-133.
[14] JIANG Zhu;GUO Wei. Ways of textile industrial upgrading in the progress of Chinese new type industrialization [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 117-121.
[15] TAO Hong;DAI Changjun. Provincial textile industry in China: labor productivity comparison [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 132-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .