Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 58-66.doi: 10.13475/j.fzxb.20210909310

• Textile Engineering • Previous Articles     Next Articles

Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization

XIA Zhigang1,2,3, XU Ao1,2, WAN Youshun4, WEI Jiang4, ZHANG Huixia5, TANG Jiandong5, ZHENG Minbo5, GUO Qinsheng6, DING Cailing7, YANG Shengming8, XU Weilin1,2()   

  1. 1. Key Laboratory Base of New Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
    4. Wuhan Yudahua Textile and Garment Group Co., Ltd., Wuhan, Hubei 430080, China
    5. Jihua 3542 Textile Co., Ltd., Xiangyang, Hubei 441002, China
    6. Jingwei Intelligent Textile Machinery Co., Ltd., Jinzhong, Shanxi 030601, China
    7. Shandong Ruyi Science & Technology Group Co., Ltd., Jining, Shandong 272073, China
    8. Anhui Huamao Group Co., Ltd., Anqing, Anhui 272073, China
  • Received:2021-09-26 Revised:2021-11-04 Online:2022-01-15 Published:2022-01-28
  • Contact: XU Weilin E-mail:weilin_xu@wtu.edu.cn

Abstract:

Conventional spinning process is characterized by its long scattered processes and labor intensiveness, causing problems such as high energy consumption per unit production, poor product consistency, and high operating cost. In addition, multiple-type-fiber spinning leads to difficulty in fiber recycling from raw materials and resultant products. As an effort to achieve the goal of carbon peaking in 2030 and carbon neutrality in 2060, this paper establishes a low-carbon spinning strategy as carbon neutralization spinning by integrating human-machine-material-method-environment. In specific, the intensive, simple and the extensive types of low-carbon spinning technologies were analyzed. The analysis results show that after comparison with conventional ring spinning, the intensive intelligent technology achieves low-carbon and high-quality spinning by reducing operation costs by 32.67%, production energy consumption per unit by 17.5%, and product defect rate by 61.54%, effectively addressing the problems in the spinning sector. The simple type can shorten or eliminate steps in the spinning process, achieves spinning speed as high as 550 m/min, realizing the goal of efficiency-improvement and emission-reduction. The extensive type spinning develops a front-end raw material functional recycling to change waste into treasure, reducing energy and emission. The extensive type also develops medium-end carbon-nesting spinning to produce green functional yarns, and resultant manufacturing technology can be used for producing cooling, heat-insulting functional yarns for green terminal textiles.

Key words: carbon neutralization, carbon peaking, low-carbon spinning, energy-saving and emission-reduction, novel spinning technology

CLC Number: 

  • TS104.7

Fig.1

Scheme strategy framework of low-carbon spinning"

Fig.2

New method of domestic spinning"

Tab.1

Comparison of domestic intelligent spinning key equipment with foreign"

智能纺装备名称 100%国产智能纺纱 国外智能高端纺纱 对比结果
纺纱技术关键装备 经纬智能精梳机;万宝脉聚纺 立达全自动精梳机;负压紧密纺 国际先进水平;节能1/3
头并-粗纱物流系统 轨道式物流输送系统 自动导引运输车物流输送 国产效率更高
回花收付系统 全程无死角收付系统 部分收付、忽略全程 国产达到国际先进水平
智能管控系统 100%国产无死角和孤岛 与国内设备兼容差 国产兼容性优越

Tab.2

Comparison of fully domestic intelligent spinning with ordinary and foreign intelligent spinnings"

对比指标 100%国产智能纺纱技术与国内外技术的比较 国际高端
智能纺纱
测算方法 改造前的现代普通纺 改造后的智能纺 定量指标升降
生产效率 一线员工每小时万元产值提升幅度 锭速15 500 r/min,单产13.07 kg/(千锭·h) 锭速18 500 r/min,单产16.26 kg/(千锭·h) 提升24.40% 同等水平
运营成本 [(建设前运营成本-建成后运营成本)/建设前运营成本]×100% 万元产值运行成本3 931.16元 万元产值运行成本2 647.04元 降低32.67% 同等水平
产品升级周期 [(建设前研制周期-建成后研制周期)/建设前研制周期]×100% 10 d 6 d 缩短40% 同等水平
产品不良率 (建设前不良产品数/总数)×100%-(建设后不良产品数/总数)×100% 0.26% 0.1% 降低61.54% 同等水平
单位产值能耗 [(建设前单位产品实耗能源-建成后单位产品实耗能源)/建设前单位产品实耗能源]×100% 万元工业增加值综合能耗0.80 t标准煤 万元工业增加值综合能耗 0.66 t标准煤 降低17.50% 同等水平
产品质量工艺可追溯率 60% 100% 100.00% 同等水平
万锭用工 [(建设前万锭用工-建成后万锭用工)/ 建设前万锭用工]×100% 万锭用工53人 万锭用工14.8人 降低72.08% 同等水平

Fig.3

Technical characteristics and representatives of simple-type short-process high-speed open-end spinning"

Fig.4

Simple-type short-process medium-speed double-twisted and direct-cone-winded nip-end spinning"

Fig.5

Ultra-short process spinning technology of filament direct spun into large cone yarn package"

Fig.6

Ultra-short process spinning technology of film-filamentation spun into large cone yarn package"

Fig.7

Superspinning technology by integrating non-weaving and weft-knitting"

Fig.8

High-quality functional spinning technology of circulating reused fibers"

Fig.9

Short-process high-quality carbon-trapping spinning"

[1] BHSTTHATTACHARYA S D, DAS A K. Alkali degumming of decorticated ramie[J]. Color Technology, 2006, 117:342-345.
doi: 10.1111/cte.2001.117.issue-6
[2] SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189.
doi: 10.1016/j.enpol.2008.08.016
[3] ABS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69:31-49.
doi: 10.1016/j.futures.2015.03.003
[4] CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al. Scientists' warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9): 569-586.
doi: 10.1038/s41579-019-0222-5
[5] TERÄVÄINEN T. Visions of energy futures[J]. Nature Energy, 2018, 3(11): 923-924.
doi: 10.1038/s41560-018-0279-9
[6] ZHOU Y J, KERKHOVEN E J, NIELSEN J. Barriers and opportunities in bio-based production of hydrocarbons[J]. Nature Energy, 2018, 3(11): 925-935.
doi: 10.1038/s41560-018-0197-x
[7] BURNS D A, AHERNE J, GAY D A, et al. Acid rain and its environmental effects: recent scientific advances[J]. Atmospheric Environment, 2016, 146:1-4.
doi: 10.1016/j.atmosenv.2016.10.019
[8] LIKENS G E, BORMANN F H. Acid rain: a serious regional environmental problem[J]. Science, 1974, 184(4142): 1176.
doi: 10.1126/science.184.4142.1176
[9] LIVINGSTON R A. Acid rain attack on outdoor sculpture in perspective[J]. Atmospheric Environment, 2016, 146:332-345.
doi: 10.1016/j.atmosenv.2016.08.029
[10] MERCER J H. West antarctic ice sheet and CO2 greenhouse effect: a threat of disaster[J]. Nature, 1978, 271(5643): 321-325.
doi: 10.1038/271321a0
[11] PARKER R W R, BLANCHARD J L, GARDNER C, et al. Fuel use and greenhouse gas emissions of world fisheries[J]. Nature Climate Change, 2018, 8(4): 333-337.
doi: 10.1038/s41558-018-0117-x
[12] VON B H, CURRAN M A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective[J]. Journal of Cleaner Production, 2007, 15(7): 607-619.
doi: 10.1016/j.jclepro.2006.03.002
[13] COX P M, HUNTINGFORD C, WILLIAMAON M S. Emergent constraint on equilibrium climate sensitivity from global temperature variability[J]. Nature, 2018, 553(7688): 319-322.
doi: 10.1038/nature25450
[14] FERNÁNDEZ-MARTINEZ M, SARDANS J, CHEVALLIER F, et al. Global trends in carbon sinks and their relationships with CO2 and temperature[J]. Nature Climate Change, 2019, 9(1): 73-79.
doi: 10.1038/s41558-018-0367-7
[15] ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change, 2018, 8(4): 325-332.
doi: 10.1038/s41558-018-0091-3
[16] 极端天气将更频繁,联合国发出“红色警报”[EB/OL].[2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc.
Extreme weather will be more frequent, with the United Nations issuing a "red alert"[EB/OL].[ 2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc.
[17] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7.
XI Jinping. Speech at the general debate of the 7-fifth UN General Assembly[J]. Bulletin of the State Council of the People's Republic of China, 2020(28): 5-7.
[18] 国务院关于落实《政府工作报告》重点工作分工的意见[J]. 中华人民共和国国务院公报, 2021(10): 14-28.
Opinions of the State Council on the implementation of the key division of work in the Government Work Report[J]. Bulletin of the State Council of the People's Republic of China, 2021(10): 14-28.
[19] 王学元. 纺纱工艺流程功能解析[J]. 纺织器材, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62.
WANG Xueyuan. Analysis of the spinning process flow function[J]. Textile Accessories, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62.
[20] 葛晓华, 苏旭东, 袁进, 等. 工业领域碳足迹研究进展[J]. 生态经济, 2013(5): 120-125.
GE Xiaohua, SU Xudong, YUAN Jin, et al. Progress in carbon footprinting research in industry[J]. Ecological Economy, 2013(5): 120-125.
[21] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48(1): 28-33.
[22] 万由顺, 卫江, 田青, 等. 一种分类循环收付回花的全流程智能纺纱系统:201910441468.7[P]. 2019-07-16.
WAN Youshun, WEI Jiang, TIAN Qing, et al. A whole-process intelligent spinning system of sorting cycle collection and payment back of recycled fibers:201910441468.7[P]. 2019-07-16.
[23] 郝可可. 脉动集聚纺集聚机理与成纱质量分析[D]. 上海:东华大学, 2020:5-14.
HAO Keke. Analysis of pulse condensing mechanism and quality of yarn formation[D]. Shanghai: Donghua University, 2020: 5-14.
[24] 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海:东华大学, 2012:57-86.
XIA Zhigang. Moisture and temperature influence on cellulose textile fibers' tensile properties and its application in smooth yarn production[D]. Shanghai: Donghua University, 2012: 57-86.
[25] XIA Zhigang, GUO Qinsheng, YE Wenxiang, et al. Comparative study of fiber trapping by filaments in conventional and diagonal sirofil systems[J]. Textile Research Journal, 2018, 88(14): 1581-1592.
doi: 10.1177/0040517517703606
[26] TAO Xiaoming, XU Bugao, WONG S K. Method and apparatus for manufacturing a singles ring yarn:US7096655[P].2004-06-02.
[27] YIN Rong, TAO Xiaoming, XU Bugao. Yarn and fabric properties in a modified ring spinning system considering the effect of the friction surface of the false-twister[J]. Textile Research Journal, 2020, 90(5/6): 572-580.
doi: 10.1177/0040517519873057
[28] 徐卫林, 夏治刚, 丁彩玲, 等. 高效短流程嵌入式复合纺纱技术原理解析[J]. 纺织学报, 2010, 31(6): 29-36.
XU Weilin, XIA Zhigang, DING Cailing, et al. Analyzing principle of high-efficiency and shortened-process embedding spinning technology[J]. Journal of Textile Research, 2010, 31(6): 29-36.
[29] XU Weilin, XIA Zhigang, WANG Xin, et al. Embeddable and locatable spinning[J]. Textile Research Journal, 2011, 81(3): 223-229.
doi: 10.1177/0040517510380780
[30] 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021(6): 54-58.
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic full-process automatic spinning workshop[J]. China Textile Leader, 2021(6): 54-58.
[31] XIA Zhigang, XU Weilin. A review of ring staple yarn spinning method development and its trend[J]. Journal of Natural Fibers, 2013, 10(1): 62-81.
doi: 10.1080/15440478.2012.763218
[32] 夏治刚, 叶汶祥, 徐卫林. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6): 147-154.
XIA Zhigang, YE Wenxiang, XU Weilin. Review of staple yarn spinning technology and analysis of its key features[J]. Journal of Textile Research, 2013, 34(6): 147-154.
[33] AKANKWASA N T, LIN H, ZHANG Y, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2016.DOI: 10.1177/0040517516677230.
doi: 10.1177/0040517516677230
[34] MERATI A A, OKAMURA M. Effect of yarn draw-off angle on the yarn properties in friction spinning[J]. Textile Research Journal, 2005.DOI: 10.1177/0040517505059706.
doi: 10.1177/0040517505059706
[35] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of traditional jet vortex spinning and self-twist jet vortex spinning on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016, 86:1750-1758.
doi: 10.1177/0040517515606359
[36] HEARLE J W S, LORD P R, SENTURK N. Fibre migration in open-end-spun yarns[J]. Journal Textile Institute, 1972, 63:605-617.
doi: 10.1080/00405007208630383
[37] ZHENG Shaoming, ZOU Zhuanyong, SHEN Wei, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012, 82(15): 1579-1586.
doi: 10.1177/0040517511431315
[38] SOE A K, TAKAHASHI M, NAKAJIMA M, et al. Structure and properties of MVS yarns in comparison with ring yarns and open-end rotor spun yarns[J]. Textile Research Journal, 2004, 74(9): 819-826.
doi: 10.1177/004051750407400911
[39] RAMESHKUMAR C, ANANDKUMAR P, SENTHILNATHAN P, et al. Comparative studies on ring rotor and vortex yarn knitted fabrics[J]. AUTEX Res J, 2008, 8:100-105.
[40] 夏治刚, 刘英, 万由顺, 等. 一种熔结式稳固耐磨纱的直接络筒握持纺纱方法:201910774979.0[P]. 2019-08-21.
XIA Zhigang, LIU Ying, WAN Youshun, et al. A directional cone-winding nipped spinning method of stable resistant yarn with melted coherence fibers:201910774979.0[P]. 2019-08-21.
[41] 彭浩凯. 一种多捻纺纱装置、多捻纺纱设备及纺纱方法:20201352358.6[P]. 2020-08-11.
PENG Haokai. Spinning device, equipment and method of multiple twisting of filament fibers:20201352358.6[P]. 2020-08-11.
[42] XIA Zhigang, LIU Xin, DING Cailing, et al. Ring composite spinning method based on film filamentization: US 10577727B2[P]. 2020-04-03.
[43] 夏治刚, 徐卫林, 郭沁生, 等. 一种型膜成丝的方法:201710329766.8 [P]. 2019-05-31.
XIA Zhigang, XU Weilin, GUO Qinsheng, et al. A method of film filamentization: 201710329766.8 [P]. 2019-05-31.
[44] 谢晓英, 宋富佳. 2015米兰国际纺织机械展览会预览:二[J]. 纺织导报, 2015, 10(4): 49-76.
XIE Xiaoying, SONG Fujia. Preview of Milan international textile machinery exhibition 2015:II[J]. China Textile Leader, 2015, 10(4): 49-76.
[45] 2015迈耶西创新研发出纺纱编织一体机[J]. 毛纺科技, 2016, 44(1): 59.
Meyersi innovatively developed an all-in-one spinning and weaving machine in 2015 [J]. Wool Textile Journal, 2016, 44(1): 59.
[46] 吴济宏, 朱慧, 何满堂, 等. 一种纤维网型针织物的制备方法:201810270979.2 [P]. 2018-07-17.
WU Jihong, ZHU Hui, HE Mantang, et al. A preparation method of fiber mesh knitting material:201810270979.2 [P]. 2018-07-17.
[47] LIU Hongtao, XU Weilin, LIU Xiuying, et al. Effects of superfine silk protein powders on mechanical properties of wet-spun polyurethane fibers[J]. Journal of Applied Polymer Science, 2009, 114:3428-3433.
doi: 10.1002/app.v114:6
[48] XU Weilin, CUI Weigang, LI Wenbin, et al. Development and characterizations of super-fine wool powder[J]. Powder Technology, 2004, 140:130-140.
[49] 徐卫林, 郭维琪, 李文斌. 一种用于加工有机纳米粉末的磨盘:02154128.0[P]. 2002-12-25.
XU Weilin, GUO Weiqi, LI Wenbin. A grinding plate used for processing organic nano powders:02154128.0[P]. 2002-12-25.
[50] YU Xichen, FAN Wei, AZWAR Elfina, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021, 317:128446.
doi: 10.1016/j.jclepro.2021.128446
[51] YU Wen, LI Xiang, HE Jianxin, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016
[52] JIANG Guojun, ZHANG Junrui, JI Dongxiao, et al. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns[J]. Fibers and Polymers, 2017, 18(5): 987-992.
doi: 10.1007/s12221-017-1194-6
[53] YANG Yuchen, QUAN Zhenzhen, ZHANG Hongnan, et al. Investigation on the processability, structure and properties of micro-/nano-fiber composite yarns produced by trans-scale spinning[J]. Journal of Industrial Textiles, 2020.DOI: 10.1177/1528083720941177.
doi: 10.1177/1528083720941177
[54] 夏治刚, 曹根阳, 刘欣, 等. 一种纳微尺度增强纤维成纱的长丝环锭复合纺纱方法:201610837502.9 [P]. 2018-09-25.
XIA Zhigang, CAO Genyang, LIU Xin, et al. A composite ring spinning method of nano-scale fiber enhancing the micro-scale fiber bundles:201610837502.9[P]. 2018-09-25.
[55] 徐卫林, 夏治刚, 曹根阳, 等. 一种纳微尺度增强纤维成纱的赛络纺纱方法:201610847425.5 [P]. 2018-09-25.
XU Weilin, XIA Zhigang, CAO Genyang, et al. A siro-spinning method of nano-scale fiber enhancing the microscale fiber bundles:201610847425.5 [P]. 2018-09-25.
[56] 夏治刚, 付驰宇, 丁彩玲, 等. 一种超短难纺短纤维短流程成纱的方法:201810126455.6 [P]. 2021-05-07.
XIA Zhigang, FU Chiyu, DING Cailing, et al. A ultra short-process yarn-forming method of ultra short hard spun staple fibers:201810126455.6 [P]. 2021-05-07.
[57] 徐卫林, 夏治刚, 丁彩玲, 等. 一种超短难纺纤维短流程复合成纱的方法:201810126434.4 [P]. 2021-05-07.
XU Weilin, XIA Zhigang, DING Cailing, et al. A ultra short-process composite yarn-forming method of ultra short hard spun staple fibers:201810126434.4 [P]. 2021-05-07.
[58] 夏治刚, 丁彩玲, 刘欣, 等. 一种内置微粒材料的纱线成形方法:201810126447.1 [P]. 2019-12-03.
XIA Zhigang, DING Cailing, LIU Xin, et al. A yarn forming method by inner nesting micro-particle materials:201810126447.1 [P]. 2019-12-03.
[59] 徐卫林, 夏治刚, 刘欣, 等. 一种内置粉体材料的复合纱线成形方法:201810126461.1 [P]. 2019-11-05.
XU Weilin, XIA Zhigang, LIU Xin, et al. A composite yarn forming method by inner nesting powder materials:201810126461.1 [P]. 2019-11-05.
[60] ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021.DOI: 10.1126/science.abi5484.
doi: 10.1126/science.abi5484
[61] WANG Kai, FU Chiyu, WANG Rui, et al. High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric[J]. Composites Part B: Engineering, 2021, 212:108663.
doi: 10.1016/j.compositesb.2021.108663
[1] TANG Zhengkun, LIU Yanbin, XU Chenye, LIU Yanbiao, SHEN Chensi, LI Fang, WANG Huaping. Trend of environmental governance in textile industry aiming at carbon neutrality and emission reduction [J]. Journal of Textile Research, 2022, 43(01): 131-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .