Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 52-58.doi: 10.13475/j.fzxb.20210911207

• Textile Engineering • Previous Articles     Next Articles

Measurement of micro deformation of yarns and fabrics based on digital image correlation method

WANG Mingliang1, ZHANG Huile2, YUE Xiaoli1, CHEN Huimin1()   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Yangtze Delta Research Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313000, China
  • Received:2021-09-29 Revised:2022-01-12 Online:2022-11-15 Published:2022-12-26
  • Contact: CHEN Huimin E-mail:ch_huimin@dhu.edu.cn

Abstract:

In order to measure the tensile deformation of yarns and structural repeat in fabrics accurately and continuously, a method for uniaxial tensile test was proposed in micro scale based on a digital image correlation method (DIC). Four types of fabric were selected, and yarn samples were acquired from the fabrics before the fabrics were cut into testing samples. A designed speckle pattern was made on each sample. As the next step, the yarn and fabric samples were subjected to uniaxial tensile tests and the whole process was recorded by camera. Extensometers were introduced in the DIC testing software to calculate the linear strain of segmented parts on single yarn and the linear strain of fabric along the warp and weft directions. The results show that the linear strain increases at different rates in each part on the yarn during the tensile process. When the fabric is stretched by small deformation, the deformation of fabric is non-uniform, especially for weft knitted fabrics. The method to measure the micro deformation based on DIC reveals the deformation patterns for yarns and fabrics in production and application, and it provides information for the design and application of intelligent wearable electronic textiles.

Key words: digital image correlation method, micro scale, linear strain measurement, textile testing

CLC Number: 

  • TS101.8

Tab.1

Sample specification"

试样
编号
织物成分 织物类型 面密度/
(g·m-2)
纱线线密度/
tex
1# 涤纶 平纹机织 120 13.0
2# 纬编针织 160 22.4
3# 纬编针织 140 18.2
4# 涤/棉
(65/35)
纬编针织 144 14.6

Fig.1

Diagram of samples.(a) Sample of yarn; (b) Sample of fabric"

Fig.2

Speckle pattern.(a) Fabric 1#; (b) Fabric 2#; (c) Fabric 3#; (d) Fabric 4#"

Fig.3

Lab environment.(a) Experimental scene of yarn; (b) Experimental scene of fabric"

Fig.4

Calibration of DIC measuring.(a) Calibration of yarn; (b) Calibration of fabric at micro level"

Fig.5

Schematic diagram of DIC-2D measuring"

Fig.6

Options of extensometers.(a) Selection of extensometers on yarn; (b) Selection of extensometers on loop"

Fig.7

Variation curve of extensometers in warp yarn 1#"

Tab.2

Range of extensometers’ strain rate in yarn"

试样
编号
引伸计应变速率/ (%·s-1)
最大值 最小值
1# -A1 0.277 0 0.202 3
1# -A2 0.266 9 0.175 2
1# -A3 0.223 2 0.169 1
1# -A4 0.412 3 0.111 0
1# -A5 0.386 3 0.199 9
1# -A6 0.458 3 0.093 6
2# -A1 0.248 8 0.137 6
2# -A2 0.278 3 0.118 8
2# -A3 0.257 3 0.101 2
3#-A1 0.178 6 0.104 5
3#-A2 0.215 4 0.098 6
3#-A3 0.243 3 0.094 1
4#-A1 0.155 9 0.079 9
4#-A2 0.205 7 0.091 3
4#-A3 0.192 3 0.109 2

Fig.8

Strain trend of extensometers in yarn"

Fig.9

Variation curve of extensometers by warp tensile"

Fig.10

Variation curve of extensometers by weft tensile"

Tab.3

Standard deviation of extensometers’ strain"

织物
编号
纵向拉伸
应变标准差/%
横向拉伸
应变标准差/%
伸长 收缩 伸长 收缩
1# 0.329 6 0.194 8 0.599 9 0.393 6
2# 1.270 5 1.249 2 0.352 4 0.645 5
3# 0.440 9 0.617 6 0.378 2 0.435 8
4# 0.645 4 0.667 1 0.348 9 0.481 0
[1] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(7):565-575.
doi: 10.6023/A16030156
QIAN Xin, SU Meng, LI Fengyu, et al. Research progress in flexible wearable electronic sensors[J]. Acta Chimica Sinica, 2016, 74(7): 565-575.
doi: 10.6023/A16030156
[2] WANG Zifeng, HUANG Yan, SUN Jinfeng, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24837-24843.
[3] GE Jin, SUN Li, ZHANG Furui, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2016, 28(4): 722-728.
doi: 10.1002/adma.201504239
[4] 吕常亮, 郝志远, 陈慧敏, 等. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(3):21-26.
LÜ Changliang, HAO Zhiyuan, CHEN Huimin, et al. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory[J]. Journal of Textile Research, 2021, 42(3): 21-26.
[5] 尉腾祥, 李敏, 彭虹云, 等. 纬平棉针织物双向拉伸线圈形态分析[J]. 纺织学报, 2019, 40(11):64-68.
WEI Tengxiang, LI Min, PENG Hongyun, et al. Shape analysis of biaxial stretching coil of weft plain knitted cotton fabric[J]. Journal of Textile Research, 2019, 40(11): 64-68.
[6] 李瑛慧, 谢春萍, 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11):41-47.
LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017, 38(11): 41-47.
[7] 孙亚博, 李立军, 马崇启, 等. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(2):107-112.
SUN Yabo, LI Lijun, MA Chongqi, et al. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS[J]. Journal of Textile Research, 2021, 42(2): 107-112.
[8] LÓPEZ-SANTOS F, MAY-PAT A, LEDESMA-OROZCO E R, et al. Measurement of in-plane and out-of-plane elastic properties of woven fabric composites using digital image correlation[J]. Journal of Composite Materials, 2021, 55(9):1231-1246.
doi: 10.1177/0021998320967073
[9] LIN Jianping, BAO Xingyu, HOU Yong, et al. Investigation on yield behavior of 7075-t6 aluminum alloy at elevated temperatures[J]. Chinese Journal of Mechanical Engineering, 2020, 33(5):235-246.
[10] 杨可, 王朝晖. 基于数字图像相关法的针织物泊松比测定[J]. 毛纺科技, 2021, 49(1):1-6.
YANG Ke, WANG Zhaohui. Measurement of Poisson's ratio of knitted fabrics based on digital image correlation method[J]. Wool Textile Journal, 2021, 49(1):1-6.
[11] PIERCE R S, FALZON B G, THOMPSON M C, et al. A low-cost digital image correlation technique for characterising the shear deformation of fabrics for draping studies[J]. Strain, 2015, 51(3): 180-189.
doi: 10.1111/str.12131
[12] RASHIDI A, MONTAZERIAN H, MILANI A S. Slip-bias extension test: a characterization tool for understanding and modeling the effect of clamping conditions in forming of woven fabrics[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2020.113529.
doi: 10.1016/j.compstruct.2020.113529
[13] CANAL L P, GONZÁLEZ C, MOLINA-ALDAREGUÍA J M, et al. Application of digital image correlation at the microscale in fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(10):1630-1638.
doi: 10.1016/j.compositesa.2011.07.014
[14] YUKI Arai, SEI-ICHIRO Sakata. Microscopic full field strain measurement of unidirectionally fiber reinforced plastics with the Kriging-digital image correlation and region splitting method[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2020.113513.
doi: 10.1016/j.compstruct.2020.113513
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .