Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 154-162.doi: 10.13475/j.fzxb.20210911309

• Apparel Engineering • Previous Articles     Next Articles

Finite element simulation of heat transfer through down coat panel

WU Jiayue1, WU Qiaoying2()   

  1. 1. Fashion College, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of International Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-09-29 Revised:2022-07-27 Online:2022-11-15 Published:2022-12-26
  • Contact: WU Qiaoying E-mail:bettywu2000@126.com

Abstract:

A numerical simulation method was proposed to address the shortcomings associated to the existing down product warmth test, such as long testing time and high cost. ANSYS finite element software was used to establish a three-dimensional geometric model of "down-fabric-skin". The temperature distribution characteristics of the internal and external surfaces of the model with different fabrics, different filling densities and different number of quilts were simulated and analyzed, the influence of different conditions on the heat transfer along the thickness and width directions were studied and its clo values calculated, and experimental validation was carried out. The results show that the heat transfer distance along the thickness direction of the model increases with the increase of down filling density, and the temperature and heat flow density of the outer surface decreased. The heat transfer along the thickness direction of the model increased with the increase of the number of quilting, and the heat transfer distance along the width direction of the model decreased, and the temperature and heat flow density of the outer surface gradually increased. The influence of fabric on the warmth of down products was small, and the maximum relative error between simulated and experimental clo values is 4.79%, indicating good agreement between the two.

Key words: finite element simulation, down product, warmth retention, heat transfer

CLC Number: 

  • TS941.17

Fig.1

Steady state heat transfer process"

Fig.2

Simplified model of "down-fabric-skin" tissue after quilting. (a) "Down-fabric-skin" combination; (b) Cross-section of "down-fabric-skin" combination"

Fig.3

Down experimental bags with different quilting numbers"

Fig.4

Geometric model of down-fabric-skin (take 2 quilting lines as an example)"

Fig.5

Schematic diagram of cross-sectional geometry of an elliptic cylinder(take 2 quilting lines as an example)"

Tab.1

Sample data"

试样
编号
织物名称 织物
厚度c/
mm
填充
密度/
(g·m-2)
绗缝
数量/
绗缝一
侧宽度b/
mm
半径r/
mm
1# 全弹春亚纺 0.16 60 1 296 454.67
2# 尼丝纺 0.14 60 1 296 454.67
3# 四面弹 0.37 60 1 296 454.67
4# 桃皮绒 0.31 60 1 296 454.67

Tab.2

Sample data"

试样
编号
填充密度/
(g·m-2)
绗缝数量/
绗缝一侧宽度b/
mm
半径r/mm 试样
编号
填充密度/
(g·m-2)
绗缝数量/
绗缝一侧宽
b/mm
半径r/mm
1 60 1 296 454.67 9 100 1 291 299.25
2 60 2 289 179.52 10 100 2 278 123.26
3 60 3 283 106.60 11 100 3 272 80.60
4 60 4 275 68.81 12 100 4 263 54.67
5 80 1 293 341.08 13 120 1 289 269.28
6 80 2 283 142.13 14 120 2 273 109.74
7 80 3 276 88.03 15 120 3 268 74.54
8 80 4 267 58.56 16 120 4 256 49.10

Tab.3

Fabric parameters"

材料名称 厚度/mm z轴方向导热系数/(W·m-1·K-1)
全弹春亚纺 0.16 0.019
尼丝纺 0.14 0.020
四面弹 0.37 0.056
桃皮绒 0.31 0.027

Fig.6

Part of the grid mode"

Fig.7

Temperature distribution diagram of down experimental bags of different fabrics.(a) Nylon spinning;(b) Four-sided bomb"

Fig.8

Temperature distribution of down experimental bags with different filling densities. (a) Filling density is 60 g/m2;(b) Filling density is 120 g/m2"

Fig.9

Temperature distribution diagram of down experimental bags with different quilting numbers. (a) 1 quilting ;(b) 4 quilting"

Tab.4

Model simulation heat flux value"

填充
密度/
(g·m-2)
绗缝
数量/
热流
密度/
(W·m-2)
填充
密度/
(g·m-2)
绗缝
数量/
热流
密度/
(W·m-2)
60 1 17.707 60 3 24.020
80 1 16.077 80 3 22.394
100 1 13.992 100 3 20.086
120 1 13.027 120 3 19.582
60 2 22.484 60 4 30.752
80 2 19.920 80 4 23.017
100 2 16.570 100 4 21.690
120 2 15.520 120 4 21.019

Tab.5

Summary of multiple linear regression models of heat flux density"

模型 R R2 调整后R2 标准误差
1 0.958 0.917 0.904 1.368 432

Tab.6

Heat flux regression coefficient table"

模型 未标准化系数 标准化系数 t 显著性
B 标准误差 Beta
1 (常量) 22.186 1.612 13.764 0.000
填充密度 -0.108 0.015 -0.564 -7.068 0.000
绗缝数量 2.965 0.306 0.774 9.691 0.000

Fig.10

Heat flux distribution diagram of down experimental bags with different filling densities and quilting numbers. (a) 60 g/m2, 1 quilting ;(b) 120 g/m2, 1 quilting;(c) 60 g/m2, 4 quilting"

Tab.7

Comparison of finite element simulation results and experimental results(the first group)"

试样
编号
织物 填充密度/
(g·m-2)
绗缝数量/
模拟温差/
模拟热流密度/
(W·m-2)
保暖性模拟值/
clo
保暖性测试
值/clo
相对误差/
%
1# 全弹春亚纺 60 1 5.787 17.707 2.11 2.06 2.43
2# 尼丝纺 60 1 5.863 18.648 2.03 2.01 1.00
3# 四面弹 60 1 5.807 20.954 1.79 1.88 -4.79
4# 桃皮绒 60 1 5.631 17.907 2.03 2.05 -0.98

Tab.8

Comparison of finite element simulation results and experimental results(the second group)"

试样
编号
填充密度/
(g·m2)
绗缝数量/
模拟温差/
模拟热流密度/
(W·m-2)
保暖性模拟值/
clo
保暖性测试值/
clo
相对误差/
%
1 60 1 5.787 17.707 2.11 2.06 2.43
2 60 2 6.760 22.484 1.95 1.96 -0.51
3 60 3 6.686 24.020 1.80 1.76 2.27
4 60 4 7.319 30.752 1.54 1.56 -1.28
5 80 1 6.639 16.077 2.66 2.63 1.14
6 80 2 7.309 19.920 2.37 2.45 -3.27
7 80 3 8.077 22.394 2.33 2.27 2.64
8 80 4 7.501 23.017 2.10 2.09 0.48
9 100 1 6.339 13.992 2.92 2.90 0.69
10 100 2 6.693 16.570 2.61 2.65 -1.51
11 100 3 7.412 20.086 2.38 2.38 0.03
12 100 4 7.594 21.690 2.26 2.26 -0.05
13 120 1 6.823 13.027 3.11 3.06 1.63
14 120 2 6.720 15.520 2.79 2.78 0.36
15 120 3 8.144 19.582 2.68 2.66 0.75
16 120 4 7.938 21.019 2.43 2.48 -2.02
[1] 沈华, 王茜, 王府梅. 国内外热阻测试方法研究[J]. 中国纤检, 2014(10): 66-70.
SHEN Hua, WANG Qian, WANG Fumei. Research on thermal resistance test methods at home and abroad[J]. China Fiber Inspection, 2014(10): 66-70.
[2] 张鹤誉, 赵晓明, 郑振荣. 织物热传递的数值模拟研究进展[J]. 山东纺织科技, 2014, 55(1): 50-53.
ZHANG Heyu, ZHAO Xiaoming, ZHENG Zhenrong. Research progress in numerical simulation of fabric heat transfer[J]. Shandong Textile Science & Technology, 2014, 55(1): 50-53.
[3] 孙玉钗, 冯勋伟, 程中浩. 空气层及织物层数对通过纺织品热量损失的影响[J]. 纺织学报, 2005, 26(2): 74-76.
SUN Yuchai, FENG Xunwei, CHENG Zhonghao. Effectof air and fabric layers on heat loss through textilesystem[J]. Journal of Textile Research, 2005, 26(2): 74-76.
doi: 10.1177/004051755602600113
[4] 孙玉钗, 冯勋伟, 刘超颖. 纺织品热传递有限元分析[J]. 东华大学学报(自然科学版), 2006, 32(2): 50-53.
SUN Yuchai, FENG Xunwei, LIU Chaoying. Application of finite element method in analysis of heattransfer through textile fabrics[J]. Journal of Donghua University (Natural Science), 2006, 32(2) :50-53.
[5] MUHAMMAD O R S, DANMEI S. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013(75): 45-51.
[6] PUSZKARZ A K, KORYCKI R, KRUCINSKA I. Simulations of heat transport phenomena in a three-dimensional model of knitted fabric[J]. Autex Research Journal, 2016, 16(3): 1-10.
doi: 10.1515/aut-2015-0059
[7] PUSZKARZ A K, KRUCINSKA I. The study of knitted fabric thermal insulation using thermography and finite volume method[J]. Textile Research Journal, 2017, 87(6): 1-14.
[8] PUSZKARZ A K, KRUCINSKA I. Modeling of thermal performance of multilayer protective clothing exposed to radiant heat[J]. Heat and Mass Transfer, 2020, 56: 1767-1775.
doi: 10.1007/s00231-020-02820-1
[9] 张艺强, 陈扬, 范艳娟, 等. 空气层对织物热传递影响的模拟分析[J]. 浙江理工大学学报, 2017, 37(5): 616-620.
ZHANG Yiqiang, CHEN Yang, FAN Yanjuan, et al. Simulation analysis of the influence of air layer on fabric heat transfer[J]. Journal of Zhejiang Sci-Tech University, 2017, 37(5): 616-620.
[10] 丛杉, 张玥, 马明明. 防寒服面料与填料设计探析[J]. 山东纺织科技, 2015, 56(2): 30-34.
CONG Shan, ZHANG Yue, MA Mingming. Discussion on the design of cold-proof clothing fabric and filler[J]. Shandong Textile Science & Technology, 2015, 56(2): 30-34.
[11] 孙莉, 杨莉, 袁惠芬. 基于正交试验的羽绒服保暖性的研究[J]. 武汉纺织大学学报, 2015, 28(6): 50-54.
SUN Li, YANG Li, YUAN Huifen. Research on the warmth retention of down jacket based on orthogonal test[J]. Journal of Wuhan Textile University, 2015, 28(6): 50-54.
[12] 何雨. 羽绒服保暖性的测试与评价[D]. 上海: 东华大学, 2020:14-20.
HE Yu. Test and evaluation of the warmth retention of down jackets[D]. Shanghai: Donghua University, 2020:14-20.
[13] 付贤文. 羽绒纤维集合体的导热分形模型[D]. 上海: 东华大学, 2010:35-36.
FU Xianwen. Heat conduction fractal model of down fiber aggregate[D]. Shanghai: Donghua University, 2010:35-36.
[14] 纪昭君. 羽绒服充绒因素与绗缝缩率关系的研究[D]. 上海: 东华大学, 2019:15-16.
JI Zhaojun. Research on the relationship between down jacket filling factors and quilting shrinkage[D]. Shanghai: Donghua University, 2019:15-16.
[15] 高晶. 羽绒纤维集合体的结构与性能研究[D]. 上海: 东华大学, 2006:71-85.
GAO Jing. Research on the structure and properties of down fiber assembly[D]. Shanghai: Donghua University, 2006:71-85.
[16] 秦臻. 传热学理论及应用研究[M]. 北京: 中国水利水电出版社, 2016: 33-36, 109.
QIN Zhen. Research on the theory and application of heat transfer[M]. Beijing: China Water Power Press, 2016: 33-36, 109.
[17] 郑晶晶. 冬季用围巾保暖性能评价[J]. 纺织学报, 2017, 38(12): 129-134.
ZHENG Jingjing. Evaluation of the warmth retention performance of winter scarves[J]. Journal of Textile Research, 2017, 38(12): 129-134.
[18] 吴佳佳, 唐虹. 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016, 37(9): 37-41.
WU Jiajia, TANG Hong. ABAQUS based finite elementanalysis of heat transfer through woven fabrics[J]. Journal of Textile Research, 2016, 37(9): 37-41.
[19] 陆英, 王黎明, 张振华, 等. 羽绒纤维的结构及理化性能研究进展[J]. 上海纺织科技, 2015, 43(11): 6-8.
LU Ying, WANG Liming, ZHANG Zhenhua, et al. Research progress on the structure and physical and chemical properties of down fibers[J]. Shanghai Textile Science & Technology, 2015, 43(11): 6-8.
[1] WU Daiwei, HUANG Jiacheng, WANG Yunyi. Effect of clothing deformation on thermal insulation capacity of down jackets [J]. Journal of Textile Research, 2022, 43(09): 167-174.
[2] QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66.
[3] NIU Xuejuan, XU Yanhui. Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions [J]. Journal of Textile Research, 2022, 43(06): 165-170.
[4] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[5] XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78.
[6] LIU Xueyan, JIANG Gaoming. Size prediction of knitted sports pressure socks based on ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 79-85.
[7] ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202.
[8] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[9] ZHANG Wenhuan, LI Jun. Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures [J]. Journal of Textile Research, 2021, 42(10): 190-198.
[10] ZHAO Jingde, DING Yiran, ZHANG Chunhong. Heat transfer modeling and experimental research of ventilation clothing in high-temperature outdoor environment [J]. Journal of Textile Research, 2021, 42(06): 153-159.
[11] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[12] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[13] DAI Ning, PENG Laihu, HU Xudong, CUI Ying, ZHONG Yaosen, WANG Yuefeng. Method for testing natural frequency of weft knitting needles in free state [J]. Journal of Textile Research, 2020, 41(11): 150-155.
[14] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[15] MA Yanxue, WANG Shina, LI Yuling, WEN Run. Research on design and practice of integral woven fabrics with square lining structure [J]. Journal of Textile Research, 2020, 41(06): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .