Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 109-117.doi: 10.13475/j.fzxb.20211001709

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Synthesis and properties of cationic modified flame retardant polyester fabrics

ZHANG Chudan1, WANG Rui1,2, WANG Wenqing1,2(), LIU Yanyan1, CHEN Rui1   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2021-10-11 Revised:2022-01-04 Online:2022-12-15 Published:2023-01-06
  • Contact: WANG Wenqing E-mail:20180021@bift.edu.cn

Abstract:

In order to improve the moisture absorption, dyeing and antibacterial properties of flame retardant polyester fabrics, polymer coatings with different molecular weights, including poly (2-(methacryloyloxy)ethyl) dimethyl- (3-sulfopropyl)ammonium hydroxide(PSBMA), poly (2-(methacryloyloxy)ethyl) trimethylammonium chloride solution(PMTAC) and their block copolymer PSBMA-b-PMTAC, were grafted separately on the surface of flame retardant polyethylene terephthalate (FRPET) fabrics via polydopamine mediated surface initiated atom transfer radical polymerization (SI-ATRP) technology. The surface morphology, water absorption, moisture permeability, air permeability, dyeing, bacteriostatic and flame retardant properties of these surface modified FRPET fabrics were characterized and tested to study the changes of flame retardancy, moisture permeability, bacteriostatic and dyeing properties of FRPET after surface modification. The results indicated that the peak heat release rate of block copolymer PSBMA-b-PMTAC modified FRPET fabrics reduced 60.7% comparing to that of FRPET. Compared with pristine FRPET, the modified polyester fabric showed higher water absorption and satisfied the standard of woven hygroscopic products. In addition, the modified fabrics with cationic dyeing possess certain bacteriostatic performance and the bacteriostatic rate of Escherichia coli was increased by 27%.

Key words: flame retardant polyester fabric, surface initiated atom transfer radical polymerization, cationic modification, moisture absorption, bacteriostasis, functional textile

CLC Number: 

  • TQ342

Fig.1

Formation schematic of FRPET-g-PDA-g-PSBMA-b-PMTAC via polydopamine mediated SI-ATRP"

Fig.2

SEM images of different surface modified FRPET samples"

Fig.3

SEM-EDS images of FRPET and its modified samples"

Fig.4

XPS curves of FRPET and its modified samples"

Tab.1

XPS test results of FRPET and its modified samples%"

样品 C O Br N S
FRPET-g-BiBB 74.94 23.26 1.80 - -
FRPET-g-PDA-g-PSBMA 71.24 21.91 0.48 3.81 2.57
FRPET-g-PDA-g-
PSBMA-b-PMTAC
73.40 21.80 0.19 4.43 0.19

Fig.5

TG curves of FRPET, PDA, PSBMA and PMTAC"

Fig.6

TG curves of samples with different react time"

Tab.2

Grafting ratio of modified samples with different polymerization time%"

样品名称 反应时间/h 接枝率
0.5 2.02
FRPET-g-PDA-g-PSBMA 1 4.37
1.5 4.60
2 4.71
3 1.69
FRPET-g-PDA-g-PMTAC 6 3.08
12 3.57
24 6.03

Fig.7

MCC curves of FRPET and its modified samples. (a) Heat release rate; (b) Total heat release"

Tab.3

GPC results of free polymers"

样品 Mn/(g·mol-1) PDI
PSBMA 14 579 1.38
PMTAC 6 212 1.24
PSBMA-b-PMTAC 69 627 1.89

Tab.4

Moisture adsorption of FRPET and its modified samples"

样品 透气阻抗/
(kPa·s·m-1)
透湿率/
(g·m-2·d-1)
吸水
情况
吸水率/
%
滴水扩散
时间/s
芯吸高
度/cm
水分蒸发速
率/(g·h-1)
FRPET 0.24 6 220.8 缓慢吸水 68.86 21.8 >10 0.37
FRPET-g-PDA-g-
PSBMA-b-PMMTAC
0.22 5 912.16 瞬时吸水 101.48 3.5 >10 0.32
机织类产品吸湿
快干标准样
≥8 000 ≥100 ≤5 ≥9 ≥0.18

Fig.8

Image of FRPET and its modified samples after dyeing"

Fig.9

Images of bacteriostat test result"

[1] 郝聃, 王锐, 王文庆. 硼系阻燃剂在高聚物阻燃中的应用研究进展[J]. 高分子材料科学与工程, 2021, 37(5): 115-123.
HAO Dan, WANG Rui, WANG Wenqing. Progress in the application of boron flame retardants in flame retardancy of polymers[J]. Polymer Materials Science and Engineering, 2021, 37(5): 115-123.
[2] 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179.
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179.
[3] 陈沁, 赵涛. 阻燃纤维及纺织品的研究进展[J]. 印染, 2015, 41(5): 49-54.
CHEN Qin, ZHAO Tao. Research development of flame retardant fibers and textiles[J]. China Dyeing & Finishing, 2015, 41(5): 49-54.
[4] HORROCKS A R. Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions[J]. Polymer Degradation and Stability, 2011, 96(3): 377-392.
doi: 10.1016/j.polymdegradstab.2010.03.036
[5] 周颖雨, 王文庆, 王锐. 层层自组装法制备阻燃织物的研究进展[J]. 北京服装学院学报(自然科学版), 2019, 39(4): 12.
ZHOU Yingyu, WANG Wenqing, WANG Rui. Research progress of flame-retardant fabrics prepared by layer-by-layer self-assembly[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2019, 39(4): 12.
[6] 刘琳琳, 王文庆, 王锐. POSS在聚合物中的阻燃应用研究进展[J]. 北京服装学院学报(自然科学版), 2021, 41(1): 73-82.
LIU Linlin, WANG Wenqing, WANG Rui. Progress of flame retardant application of POSS in polymers[J]. Journal of Beijing Institute of Fashion Techno-logy (Natural Science Edition), 2021, 41(1): 73-82.
[7] 靳昕怡, 朱志国, 王颖, 等. 耐熔滴性阻燃聚酯的制备及性能研究[J]. 化工新型材料, 2019, 47(1): 144-147,151.
JIN Xinyi, ZHU Zhiguo, WANG Ying, et al. Study on preparation and property of flame of retardant PET with dripping resistance[J]. New Chemical Materials, 2019, 47(1):144-147,151.
[8] ZHAO C S, HUANG F L, XIONG W C, et al. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 2008, 93(6): 1188-1193.
doi: 10.1016/j.polymdegradstab.2008.03.010
[9] LI X, CAI T, CHUNG T S. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power gener-ation[J]. Environmental Science & Technology, 2014, 48(16): 9898-9907.
doi: 10.1021/es5017262
[10] CHENG G, XUE H, ZHANG Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities[J]. Angewandte Chemie, 2008, 120(46): 8963-8966.
doi: 10.1002/ange.200803570
[11] ZHU J, SU Y, ZHAO X, et al. Improved antifouling properties of poly (vinyl chloride) ultrafiltration membranes via surface zwitterionicalization[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14046-14055.
doi: 10.1021/ie5022877
[12] NI L, MENG J, LI X, et al. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement[J]. Journal of Membrane Science, 2014, 451: 205-215.
doi: 10.1016/j.memsci.2013.09.040
[13] 闫淑敏. 棉纤维的DMC阳离子化改性及其活性染料染色性能研究[D]. 大连: 大连理工大学, 2015:23-50.
YAN Shumin. Preparation of DMC-modified cationic cotton fabrics and its application in salt-free dyeing of reactive dyes[D]. Dalian: Dalian University of Technology, 2015:23-50.
[14] YE G, LEE J, PERREAULT F, et al. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated ″defending″ and ″attacking″ strategies against biofoul-ing[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23069-23079.
[15] 王亚举. PETG共混改性研究进展[J]. 山东化工, 2021, 50(16): 64-65.
WANG Yaju. Developments of modification of PETG[J]. Shandong Chemical Industry, 2021, 50(16):64-65.
[16] LIU R, SUN Y, GU H, et al. Synthesis and application of acrylate copolymer as high ink-absorption and fast drying coating agent for polyester fabric[J]. Progress in Organic Coatings, 2019. DOI: 10.1016/j.porgcoat.2019.105298.
doi: 10.1016/j.porgcoat.2019.105298
[17] 卢维山. 可生物降解聚丙烯复合纺粘无纺布性能研究[J]. 轻工标准与质量, 2018, 162(6): 51-52,54.
LU Weishan. Study on properties of biodegradable polypropylene composite spunbonded non-woven fabric[J]. Standard & Quality of Light Industry, 2018, 162(6):51-52,54.
[18] 周颖雨, 王锐, 靳高岭, 等. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(3): 181-189,196.
ZHOU Yingyu, WANG Rui, JIN Gaoling, et al. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics[J]. Journal of Textile Research, 2021, 42(3):181-189,196.
doi: 10.1177/004051757204200310
[19] MATYJASZEWSKI K, TSAREVSKY N V. Macromolecular engineering by atom transfer radical polymerization[J]. Journal of The American Chemical Society, 2014, 136(18): 6513-6533.
doi: 10.1021/ja408069v pmid: 24758377
[20] RAN J, WU L, ZHANG Z, et al. Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes[J]. Progress in Polymer Science, 2014, 39(1): 124-144.
doi: 10.1016/j.progpolymsci.2013.09.001
[21] HUI C M, PIETRASIK J, SCHMITT M, et al. Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials[J]. Chemistry of Materials, 2014, 26(1): 745-762.
doi: 10.1021/cm4023634
[22] WANG J S, MATYJASZEWSKI K. Controlled/" living" radical polymerization: halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process[J]. Macromolecules, 1995, 28(23): 7901-7910.
doi: 10.1021/ma00127a042
[23] KATO M, KAMIGAITO M, SAWAMOTO M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization[J]. Macromolecules, 1995, 28(5): 1721-1723.
doi: 10.1021/ma00109a056
[24] YANG Y, WANG J, WU F, et al. Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core-shell magnetic nanoparticles for highly-efficient uranium enrichment[J]. Polymer Chemistry, 2016, 7(13): 2427-2435.
doi: 10.1039/C6PY00109B
[25] WANG W, JULAITI P, YE G, et al. Controlled architecture of glass fiber/poly (glycidyl methacrylate) composites via surface-initiated ICAR ATRP mediated by mussel-inspired polydopamine chemistry[J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11467-11476.
doi: 10.1021/acs.iecr.7b03065
[26] WANG W, JULAITI P, YE G, et al. Controlled architecture of macrocyclic ligand functionalized polymer brushes from glass fibers using surface-initiated ICAR ATRP technique for adsorptive separation of lithium isotopes[J]. Chemical Engineering Journal, 2018, 336: 669-678.
doi: 10.1016/j.cej.2017.12.045
[27] D'ISCHIA M, NAPOLITANO A, BALL V, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy[J]. Accounts of Chemical Research, 2014, 47(12): 3541-3550.
doi: 10.1021/ar500273y pmid: 25340503
[28] CLODT J I, FILIZ V, RANGOU S, et al. Double stimuli-responsive isoporous membranes via post‐modification of pH‐sensitive self‐assembled diblock copolymer membranes[J]. Advanced Functional Materials, 2013, 23(6): 731-738.
doi: 10.1002/adfm.201202015
[29] WANG A J, LIAO Q C, FENG J J, et al. In situ synthesis of polydopamine-Ag hollow microspheres for hydrogen peroxide sensing[J]. Electrochimica Acta, 2012, 61: 31-35.
doi: 10.1016/j.electacta.2011.11.063
[30] 肖蕊, 苏梦婷, 潘建君, 等. 温敏性水凝胶的合成及棉织物透湿透气整理[J]. 印染, 2016, 42(24): 1-4,11.
XIAO Rui, SU Mengting, PAN Jianjun, et al. Synthesis of thermosensitive hydrogels and the application to breathable finishing of cotton fabric[J]. China Dyeing & Finishing, 2016, 42(24):1-4,11.
[1] ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling. Research progress in aerogel materials application for textiles [J]. Journal of Textile Research, 2022, 43(12): 181-189.
[2] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[3] CAO Congcong, TANG Longshi, LIU Yuanjun, ZHAO Xiaoming. Research progress of inorganic antibacterial fabrics [J]. Journal of Textile Research, 2022, 43(11): 203-211.
[4] WANG Yue, WANG Chunhong, XU Lei, LIU Shengkai, LU Chao, WANG Lijian, YANG Lu, ZUO Qi. Development of environmentally friendly knitted fabrics with 3-D moisture conductive structure and performance evaluation on moisture absorption and quick-drying [J]. Journal of Textile Research, 2022, 43(10): 58-64.
[5] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[6] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[7] HE Qi, LI Junling, JIN Gaoling, LIU Jin, KE Fuyou, CHEN Ye, WANG Huaping. Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber [J]. Journal of Textile Research, 2022, 43(09): 70-75.
[8] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[9] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[10] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[11] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[12] WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96.
[13] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[14] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[15] WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!