Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20211003008

• Invited Paper •     Next Articles

Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing

JIANG Yulin1,2,3, WANG Hui1,2,3, ZHANG Keqin1,2,3()   

  1. 1. College of Textiles and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. China National Textile and Apparel Council Key Laboratory of Silk Functional Materials and Technology, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-10-01 Revised:2021-10-15 Online:2021-11-15 Published:2021-11-29
  • Contact: ZHANG Keqin E-mail:kqzhang@suda.edu.cn

Abstract:

As a natural and ancient protein material, silk fibroin (SF) has become an excellent candidate for 3D printing bioinks due to its excellent properties, and has received extensive attention in the biomedical field. The development of SF in the field of biological 3D printing is summarized, the basic physicochemical and biological characteristics of SF materials are mainly summarized, and the requirements and processability of SF materials as bio-inks for extrusion biological 3D printing, photocurable biological 3D printing and inkjet biological 3D printing are discussed. The research progress of SF based hydrogel inks synthesized with artificial polymers, natural polymers and inorganic functional materials in the field of biological 3D printing in recent years is reviewed, and the challenges are discussed. It is pointed out that with the further development of biological 3D printing technology, SF-based hydrogel constructs formed by biological 3D printing will have a broader application prospect in the biomedical field.

Key words: 3D bio-printing, silk fibroin, bioink, hydrogel, biocompatibility

CLC Number: 

  • TS101.4

Fig.1

Multi-level structure of mulberry silk. (a)Schematic diagram of multi-level structure of single mulberry silk; (b)Scanning electron microscope images of natural mulberry silk; (c)Schematic diagram of amino acid sequence in SF crystal region"

Fig. 2

Crosslinking of SF hydrogels and application of 3D-printed structures in tissue engineering"

Fig.3

Schematic diagram of the critical influencing factors and their relationship of hydrogel bio-ink in biological 3D printing"

[1] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013
[2] ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
doi: 10.1016/S0142-9612(02)00353-8
[3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013(4):1-4.
LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building Automation, 2013(4):1-4.
[4] MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785.
doi: 10.1038/nbt.2958
[5] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329:528-531.
doi: 10.1126/science.1188936
[6] 史建峰, 王涵, 赵蕾, 等. 3D生物打印支架材料的研究进展[J]. 中国药事, 2018, 32(10):1406-1411.
SHI Jianfeng, WANG Han, ZHAO Lei, et al. Research progress of scaffold materials for 3-dimensional bioprinting[J]. Chinese Pharmaceutical Affairs, 2018, 32(10):1406-1411.
[7] KLEBE R J. Cytoscribing a method for micropositioning cells and the construction of 2-dimensional and 3-dimensional synthetic tissues[J]. Experimental Cell Research, 1988, 179(2):362-373.
doi: 10.1016/0014-4827(88)90275-3
[8] YAN Y, WANG X, PAN Y, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique[J]. Biomaterials, 2005, 26(29):5864-5871.
doi: 10.1016/j.biomaterials.2005.02.027
[9] JOSE R R, BROWN J E, POLIDO K E, et al. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing[J]. ACS Biomaterials Science Engineering, 2015, 1(9):780-788.
doi: 10.1021/acsbiomaterials.5b00160
[10] SOMMER M R, SCHAFFNER M, CARNELLI D, et al. 3D printing of hierarchical silk fibroin structures[J]. ACS Appl Mater Interfaces, 2016, 8(50):34677-34685.
doi: 10.1021/acsami.6b11440
[11] RODRIGUEZ M J, BROWN J, GIORDANO J, et al. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments[J]. Biomaterials, 2017, 117:105-115.
doi: 10.1016/j.biomaterials.2016.11.046
[12] KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018, 9(1):1620.
doi: 10.1038/s41467-018-03759-y
[13] FITZPATRICK V, MARTíN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276:120995.
doi: 10.1016/j.biomaterials.2021.120995
[14] LIU B, SONG Y W, JIN L, et al. Silk structure and degradation[J]. Colloids and Surfaces B-Biointerfaces, 2015, 131:122-128.
doi: 10.1016/j.colsurfb.2015.04.040
[15] KAPOOR S, KUNDU S C. Silk protein based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31:17-32.
doi: 10.1016/j.actbio.2015.11.034
[16] FENG Y, LIN J, NIU L, et al. High molecular weight silk fibroin prepared by papain degumming[J]. Polymers, 2020, 12(9):2105.
doi: 10.3390/polym12092105
[17] ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10):1612-1631.
doi: 10.1038/nprot.2011.379
[18] HUANG W W, LING S J, LI C M, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17):6486-6504.
doi: 10.1039/C8CS00187A
[19] QI Yu, WANG Hui, WEI Kai, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017, 18(3):237.
doi: 10.3390/ijms18030237
[20] WANG Y, KIM B J, PENG B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43):21361-21368.
[21] MINOURA N, AIBA S, GOTOH Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices[J]. Journal of Biomedical Materials Research, 1995, 29(10):1215-1221.
doi: 10.1002/(ISSN)1097-4636
[22] PANILAITIS B, ALTMAN G H, CHEN J S, et al. Macrophage responses to silk[J]. Biomaterials, 2003, 24(18):3079-3085.
doi: 10.1016/S0142-9612(03)00158-3
[23] ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials, 2002, 23(20):4131-4141.
doi: 10.1016/S0142-9612(02)00156-4
[24] 史乾坤, 王玉鹏, 张浩, 等. 蛋白质基生物材料的生物医学应用进展[J]. 功能高分子学报, 2021, 34(2):161-171.
SHI Qiankun, WANG Yupeng, ZHANG Hao, et al. Advances in protein-based biomaterials for biomedical applications[J]. Journal of Functional Polymers, 2021, 34(2):161-171.
[25] ZAINUDDIN, LE T T, PARK Y, et al. The behavior of aged regenerated bombyx mori silk fibroin solutions studied by H-1 NMR and rheology[J]. Biomaterials, 2008, 29(32):4268-4274.
doi: 10.1016/j.biomaterials.2008.07.041
[26] RIBEIRO V P, PINA S, OLIVEIRA J M, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Osteochondral Tissue Engineering, 2018, 1058:305-325.
[27] YANG Y, SONG X, LI X, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36):1706539.
doi: 10.1002/adma.v30.36
[28] MALDA J, VISSER J, MELCHELS F P, et al. 25th anniversary article: engineering hydrogels for biofabrication[J]. Advanced Materials, 2013, 25(36):5011-5028.
doi: 10.1002/adma.201302042
[29] DONDERWINKEL I, VAN HEST J C M, CAMERON N R. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polymer Chemistry, 2017, 8(31):4451-4471.
doi: 10.1039/C7PY00826K
[30] AMORIM P A, D'ÁVILA M A, ANAND R, et al. Insights on shear rheology of inks for extrusion-based 3D bioprinting[J]. Bioprinting, 2021, 22:e00129.
doi: 10.1016/j.bprint.2021.e00129
[31] GHOSH S, PARKER S T, WANG X, et al. Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008, 18(13):1883-1889.
doi: 10.1002/adfm.v18:13
[32] KIM S H, KIM D Y, LIM T H, et al. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting[J]. Advances in Experimental Medicine and Biology, 2020, 1249:53-66.
[33] 陈晓敏, 王卉, 吴晨星, 等. 丝素蛋白三维打印墨水材料的交联方式研究进展[J]. 现代化工, 2021, 41(3):36-41.
CHEN Xiaomin, WANG Hui, WU Chenxing, et al. Research progress on cross-linking methods for silk fibroin ink materials in 3D printing[J]. Modern Chemical Industry, 2021, 41(3):36-41.
[34] LIMEM S, CALVERT P, KIM H J, et al. Differentiation of bone marrow stem cells on inkjet printed silk lines[J]. MRS Proceedings, 2006, 950:D04-18.
[35] CUI X, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks[J]. Advanced Healthcare Materials, 2020, 9(15):190164.
[36] WANG Q, HAN G, YAN S, et al. 3D printing of silk fibroin for biomedical applications[J]. Materials, 2019, 12(3):504.
doi: 10.3390/ma12030504
[37] CHIMENE D, LENNOX K K, KAUNAS R R, et al. Advanced bioinks for 3D printing: a materials science perspective[J]. Annals of Biomedical Engineering, 2016, 44(6):2090-2102.
doi: 10.1007/s10439-016-1638-y
[38] SHANJANI Y, PAN C C, ELOMAA L, et al. A novel bioprinting method and system for forming hybrid tissue engineering constructs[J]. Biofabrication, 2015, 7(4):045008.
doi: 10.1088/1758-5090/7/4/045008
[39] LEE K Y, MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews, 2001, 101(7):1869-1879.
doi: 10.1021/cr000108x
[40] EGAWA S, KURITA H, KANNO T, et al. Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing[J]. Advanced Engineering Materials, 2021, 23(9):2100487.
doi: 10.1002/adem.v23.9
[41] LI Z, WU N, CHENG J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration[J]. Theranostics, 2020, 10(11):5090-5106.
doi: 10.7150/thno.44270
[42] LI X H, ZHU X, LIU X Y, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats[J]. Journal of Materials Science Materials in Medicine, 2021, 32(4):31.
doi: 10.1007/s10856-021-06500-2
[43] KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5):1921-1931.
doi: 10.1021/acs.biomac.1c00034
[44] LEE H, SHIN D, SHIN S, et al. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing[J]. Journal of Industrial and Engineering Chemistry, 2020, 89:119-127.
doi: 10.1016/j.jiec.2020.03.034
[45] SANGKERT S, KAMOLMATYAKUL S, GELINSKY M, et al. 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery[J]. Materials Today Communications, 2021, 26:102140.
doi: 10.1016/j.mtcomm.2021.102140
[46] KADUMUDI F B, HASANY M, PIERCHALA M K, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels[J]. Advanced Materials, 2021, 33(35):2100047.
doi: 10.1002/adma.v33.35
[1] LI Feng, YANG Jiahao, LAI Gengchang, WANG Jiannan, XU Jianmei. Research progress of polymer embolic microspheres [J]. Journal of Textile Research, 2021, 42(10): 180-189.
[2] YU Zhicai, LIU Jinru, HE Hualing, MA Shengnan, JIANG Huiyu. Research and application progress in fire retardant fabric based on polymeric hydrogel [J]. Journal of Textile Research, 2021, 42(09): 180-186.
[3] SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184.
[4] LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48.
[5] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53.
[6] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[7] SHENG Mingfei, WANG Wanning, ZHANG Liping, FU Shaohai. Preparation and properties of continuously produced electric-responsive liquid crystal fibers [J]. Journal of Textile Research, 2021, 42(02): 27-33.
[8] CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6.
[9] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[10] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[11] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[12] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[13] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[14] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[15] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .