Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 93-99.doi: 10.13475/j.fzxb.20211003707
• Fiber Materials • Previous Articles Next Articles
HAN Wanli1,2(), XIE Sheng2, WANG Xinhou3, WANG Yudong4
CLC Number:
[1] | 孟庆兴. 熔喷非织造技术的发展与应用现状[J]. 聚酯工业, 2020, 33(3): 16-19. |
MENG Qingxing. Development and application of melt-blown nonwoven technology[J]. Polyester Industry, 2020, 33(3): 16-19. | |
[2] | 周晴, 李丽, 魏安海, 等. 医用口罩熔喷层非油性颗粒过滤效率和纤维形态的相关性分析[J]. 中国医学装备, 2020, 17(10): 194-196. |
ZHOU Qing, LI Li, WEI Anhai, et al. Correlation analysis on the filter efficiency and fiber morphology of non-oiliness particle of melt-blown nonwovens of medical mask[J]. China Medical Equipment, 2020, 17(10): 194-196. | |
[3] | 覃俊, 陈丽萍, 何勇. 聚苯硫醚熔喷超细纤维的应用前景展望[J]. 纺织科技进展, 2020(10): 1-5. |
QIN Jun, CHEN Liping, HE Yong. Application prospect of poly(p-phenylene sulfide) melt blown superfine fiber[J]. Progress in Textile Science & Technology, 2020(10): 1-5. | |
[4] | 孙焕惟, 张恒, 甄琪, 等. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20-28. | |
[5] | 刘禹豪, 孙辉, 王捷琪, 等. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(2): 95-102. |
LIU Yuhao, SUN Hui, WANG Jieqi. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties[J]. Journal of Textile Research, 2020, 41(2): 95-102. | |
[6] |
LI H, HUANG H, ZENG Y. Effects of compatibilizer and airflow field on the formation of helical microfibers via melt blowing[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(21): 1423-1433.
doi: 10.1002/polb.24887 |
[7] |
YANG Y, ZENG Y. Simultaneous measurement in nonisothermal melt-blowing airflow field: time-averaged and turbulent characteristics[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10664-10672.
doi: 10.1021/acs.iecr.0c01278 |
[8] |
XIE S, ZENG Y. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5346-5352.
doi: 10.1021/ie202938b |
[9] | 孙亚峰. 微纳米纤维纺丝拉伸机理的研究[D]. 上海: 东华大学, 2010:25-40. |
SUN Yafeng. Investigation of macro nano fiber formation[D]. Shanghai: Donghua University, 2010:25-40. | |
[10] |
ZENG Y C, SUN Y F, WANG X H. Numerical approach to modeling fiber motion during melt blowing[J]. Journal of Applied Polymer Science, 2011, 119(4): 2112-2123.
doi: 10.1002/app.32921 |
[11] |
WIELAND M, ARNE W, MARHEINEKE N, et al. Melt-blowing of viscoelastic jets in turbulent airflows: stochastic modeling and simulation[J]. Applied Mathematical Modelling, 2019, 76(12): 558-577.
doi: 10.1016/j.apm.2019.06.023 |
[12] |
XIE S, ZENG Y. Online measurement of fiber whipping in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2116-2122.
doi: 10.1021/ie3024615 |
[13] |
HAN W, BHAT G S, WANG X. Investigation of nanofiber breakup in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2016, 55(11): 3150-3156.
doi: 10.1021/acs.iecr.5b04472 |
[14] |
SOLTANI I, MACOSKO C W. Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens[J]. Polymer, 2018, 145(6): 21-30.
doi: 10.1016/j.polymer.2018.04.051 |
[15] | 姬长春, 张开源, 王玉栋, 等. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(8): 175-180. |
JI Changchun, ZHANG Kaiyuan, WANG Yudong, et al. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(8): 175-180. | |
[16] | HAN W, XIE S, SHI J, et al. Study on airflow field and fiber motion with new melt blowing die[J]. Polymer Engineering & Science, 2019, 59(6): 1182-1189. |
[17] |
KRUTKA H M, SHAMBAUGH R L, PAPAVASSILOU D V. Analysis of a melt blowing die: comparison of CFD and experiments[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5125-5138.
doi: 10.1021/ie020366f |
[18] |
KRUTKA H M, SHAMBAUGH R L, PAPAVASSILOU D V. Effects of temperature and geometry on the flow field of the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2004, 43(15): 4199-4210.
doi: 10.1021/ie040043e |
[19] |
HAN W, WANG X. Modeling melt blowing fiber with different polymer constitutive equations[J]. Fibers and Polymers, 2016, 17(1): 74-79.
doi: 10.1007/s12221-016-5721-7 |
[20] |
MATSUI M. Air drag on a continuous filament in melt spinning[J]. Transactions of the Society of Rheology, 1976, 20(3): 465-473.
doi: 10.1122/1.549434 |
[21] |
CHUNG C, KUMAR S. Onset of whipping in the melt blowing process[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 192: 37-47.
doi: 10.1016/j.jnnfm.2012.10.005 |
[1] | LÜ Jindan, CHENG Longdi. Influence of groove shape on flow field and yarn properties of compact spinning [J]. Journal of Textile Research, 2023, 44(01): 188-193. |
[2] | TAN Linli, QIN Liu, LI Yingru, DENG Lingli, XIE Zhiyin, LI Shidong. Preparation and performance of high efficiency and low resistance polypropylene melt-blown fiber based on supercritical carbon dioxide [J]. Journal of Textile Research, 2023, 44(01): 87-92. |
[3] | YANG Ruihua, HE Chuang, GONG Xinxia, CHEN Hewen. Numerical simulation of airflow field in carding and trash removal zone of rotor spinning [J]. Journal of Textile Research, 2022, 43(10): 31-35. |
[4] | SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184. |
[5] | CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38. |
[6] | GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139. |
[7] | SHANG Shanshan, YU Chongwen, YANG Jianping, QIAN Xixi. Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167. |
[8] | . Numerical simulation of influence of groove type on flow field knside rotor [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 128-133. |
[9] | . Motion control and experiment analysis of high speed axial suspension knitting needle in zero transmission [J]. Journal of Textile Research, 2016, 37(4): 137-142. |
[10] | . Numerical simulation for 3−D flow field of rotor spinning channel [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 145-150. |
[11] | . Numerical study of two-dimensional air flow in the spinning cup of rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 51-54. |
[12] | . Evaluation of feeding performance based on error analysis of motion trajectory [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 143-147. |
|