Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 48-53.doi: 10.13475/j.fzxb.20211006806

• Textile Engineering • Previous Articles     Next Articles

Design of simulation and control system for sliver blending

LI Hao1, CAO Qiaoli1, LI Jiawei1, HAN Zhenning1, YU Chongwen1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-10-26 Revised:2022-06-10 Online:2022-12-15 Published:2023-01-06
  • Contact: YU Chongwen E-mail:yucw@dhu.edu.cn

Abstract:

In order to obtain the distribution data of multi-component fibers in the blended yarn after the blending process, and to predict the quality indexes such as the blending irregularity and the unevenness of the sliver, MatLab software was used to simulate the motion state of the multi-component fibers in the process of sliver blending, and a visual operation platform was designed to build a simulation and control system. The simulation results were compared to the experimental results, revealing good agreements with different process parameters for blending. The simulation process is fast and visual. This system accurately predicts and control the shape and quality of blended yarns, and the work provides reference for the optimization of process parameters for practical production.

Key words: sliver blending, fiber distribution, blending irregularity, evenness of yarn, simulation

CLC Number: 

  • TS104.5

Fig.1

Flow chart of simulation"

Fig.2

Diagram of fiber distribution in sliver. (a) Longitudinal distribution; (b) Cross section distribution"

Fig.3

Design of input and output interface of simulation system. (a) Simulation system interface; (b) Switch output image to ″Yarn Longitudinal Shape″"

Fig.4

Simulation images of three-dimensional yarn longitudinal morphology from different angles. (a) X-Y View; (b) X-Z View; (c) θAz:3°, θEI:90°; (d) θAz:-36°, θEl:11°"

Tab.1

Comparison between simulated irregularity and measured irregularity with different blending ratios%"

白色与黑色纤维混纺比 头道并条 二道并条 三道并条
模拟值 实测值 误差 模拟值 实测值 误差 模拟值 实测值 误差
16.7:83.3 146.62 175.68 16.54 115.46 87.48 31.98 56.26 57.02 1.33
33.3:66.7 107.02 100.56 6.42 58.89 48.50 21.42 31.17 47.16 33.91
50.0:50.0 70.77 65.39 8.23 44.17 37.71 17.13 22.28 35.43 37.12

Fig.5

Comparison of simulation and measured images of blended sliver by white and black fibers under blending ratios of 16.7∶83.3(a), 33.3∶66.7(b) and 50∶50(c)"

Tab.2

Comparison between simulated mixing irregularity and measured irregularity under different arrangement of first silver blending%"

纱条排列方式 头道并条 二道并条 三道并条
模拟值 实测值 误差 模拟值 实测值 误差 模拟值 实测值 误差
WBWBWBWB 67.01 69.14 3.08 52.37 50.57 3.56 41.34 40.89 1.10
WWBBWWBB 78.57 76.43 2.80 57.48 54.35 5.76 43.18 43.88 1.60
WWWWBBBB 92.94 83.29 11.59 60.13 61.87 2.81 45.6 46.99 2.96
[1] 郁崇文. 纺纱学[M].2版. 北京: 中国纺织出版社, 2014: 112-115.
YU Chongwen. Spinning science[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2014: 112-115.
[2] JIANG Z, KUANG X Q, YANG J P, et al. Simulation on fiber random arrangement in the yarn: part II: joint effect of fiber length and fineness distribution[J]. Journal of The Textile Institute, 2017, 108(3):347-352.
doi: 10.1080/00405000.2016.1166821
[3] SUN N, YU C W. Simulation on roller drafting based on hook fiber arrangement in the sliver[J]. Fibers and Polymers, 2021. DOI: 10.1007/s12221-021-0496-x.
doi: 10.1007/s12221-021-0496-x
[4] SUN Na, YU Chongwen, YANG Jianping. Modeling fiber arrangement and distribution during the roller drafting process[J]. Textile Research Journal, 2019, 89(19/20):4295-4305.
doi: 10.1177/0040517519829926
[5] 贺雅勤, 毕雪蓉, 钱希茜, 等. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(6):85-90.
HE Yaqin, BI Xuerong, QIAN Xixi, et al. Simulation study on effect of drafting on sliver unevenness[J]. Journal of Textile Research, 2021, 42(6): 85-90.
[6] COX D R. Some statistical aspects of mixing and blending[J]. Journal of The Textile Institute, 1954, 45(2):113-122.
[7] 严灏景, 李再清. 混纺纱条混和不匀公式的探讨[J]. 纺织学报, 1980, 4 (1):1-6,78.
YAN Haojing, LI Zaiqing. Discussion on formula of unevenness of blended yarn sliver[J]. Journal of Textile Research, 1980, 4(1):1-6,78.
[8] JIANG Zhan, HU Yuanbo, KUANG Xueqin, et al. Simulation on fiber random arrangement in the yarn[J]. Journal of The Textile Institute, 2014, 105(12):209-213.
doi: 10.1080/00405000.2013.834575
[9] 林倩. 纤维几何特征对成纱条干不匀的影响分析[D]. 上海: 东华大学, 2011: 81-83.
LIN Qian. Effect of fiber geometrical characteristics on yarn unevenness[D]. Shanghai: Donghua University, 2011: 81-83.
[10] SUN Na, JIANG Zhan, YU Chongwen. Modeling roller drafting based on fiber arrangement in the sliver[J]. The Journal of The Textile Institute, 2018, 109(11). 1477-1481.
doi: 10.1080/00405000.2018.1427909
[11] QIAN X, SHEN Y, CAO Q, et al. Simulation of carding condensing process[J]. Textile Research Journal, 2022, 92(15/16):2935-2944.
doi: 10.1177/0040517520988125
[12] CAO Qiaoli, QIAN Lili, LI Hao, et al. Simulation of sliver blending and evaluation of blending irregularity[J]. Textile Research Journal, 2022. DOI:10.1177/00405175211028803.
doi: 10.1177/00405175211028803
[1] CHEN Yushan, JIANG Gaoming, LI Bingxian. Design and 3-D simulation of weft knitted wrap fabric [J]. Journal of Textile Research, 2022, 43(12): 62-68.
[2] JIN Guanxiu, ZHU Chengyan. Prediction of pore dimension in composite nonwovens based on image simulation and support vector machine [J]. Journal of Textile Research, 2022, 43(12): 75-81.
[3] WU Jiayue, WU Qiaoying. Finite element simulation of heat transfer through down coat panel [J]. Journal of Textile Research, 2022, 43(11): 154-162.
[4] SUN Jian, JIANG Boyi, ZHANG Shoujing, HU Sheng. Influence of different nozzle structures and parameters on nozzle performance of foreign fiber sorters [J]. Journal of Textile Research, 2022, 43(10): 169-175.
[5] YANG Ruihua, HE Chuang, GONG Xinxia, CHEN Hewen. Numerical simulation of airflow field in carding and trash removal zone of rotor spinning [J]. Journal of Textile Research, 2022, 43(10): 31-35.
[6] CHENG Yanting, MENG Jiaguang, XUE Tao, ZHI Chao. Preparation of 3D printed weft plain knitted fabric [J]. Journal of Textile Research, 2022, 43(09): 115-119.
[7] ZHU Wenni, XU Runnan, HU Diefei, YAO Juming, MILITKY Jiri, KREMENAKOVA Dana, ZHU Guocheng. Simulation analysis of filtration characteristics of fiber materials based on random algorithm [J]. Journal of Textile Research, 2022, 43(09): 76-81.
[8] WU Xia, YAO Juming, WANG Yan, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, ZHU Guocheng. Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade [J]. Journal of Textile Research, 2022, 43(08): 80-87.
[9] DONG Zhijia, SUN Fei, CONG Honglian, YU Xuliang. Structural design and modeling of low-waste weft knitting fully fashioned female vests [J]. Journal of Textile Research, 2022, 43(07): 129-134.
[10] NIU Xuejuan, XU Yanhui. Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions [J]. Journal of Textile Research, 2022, 43(06): 165-170.
[11] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[12] RU Xin, ZHU Wanzhen, SHI Weimin, PENG Laihu. Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution [J]. Journal of Textile Research, 2022, 43(06): 63-69.
[13] XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78.
[14] LIU Xueyan, JIANG Gaoming. Size prediction of knitted sports pressure socks based on ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 79-85.
[15] YU Yukun, SUN Yue, HOU Jue, LIU Zheng, YICK Kitlun. Dynamic finite element modeling and simulation of single layer clothing ease allowance [J]. Journal of Textile Research, 2022, 43(04): 124-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!