Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 105-109.doi: 10.13475/j.fzxb.20211007105

• Textile Engineering • Previous Articles     Next Articles

Effect of oiling treatment process on Lyocell fiber properties

HUANG Wei, ZHANG Jiayu, ZHUANG Xiaoxiong, ZHANG Dong, LI Ting, CHENG Chunzu(), XU Jigang   

  1. State Key Laboratory of Bio-based Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
  • Received:2021-10-26 Revised:2021-11-29 Online:2022-02-15 Published:2022-03-15
  • Contact: CHENG Chunzu E-mail:chunzuc@163.com

Abstract:

In order to optimize the oiling processing of Lyocell fibers and improve its subsequent processing performance, Lyocell fibers were oiled under the condition of constant temperature leaching and constant pressure pressing. The effects of oil concentration, oil mixing ratio and oil temperature on the film forming, friction performance, antistatic performance and mechanical properties of Lyocell fibers were studied in detail by means of scanning electron microscopy, strength and elongation analysis, friction factor analysis and volume resistance analysis. The results showed that when the oil concentration was 6 g/L, non-ionic surfactant content was 31%, the oil temperature was 65 ℃, the thickness of oil agent layer form on the fiber surface was even and the fiber smoothness was good. The mechanical properties of fiber were excellent. Fiber breaking strength was 3.92 cN/dtex, elongation at break was 11.38%. Antistatic properties and cohesiveness of fibers were best. Volume resistance of fiber was 5.66×109 Ω·cm and cohesiveness between fibers was 223.0 cN.

Key words: Lyocell fiber, oiling treatment, volume resistance, cohesiveness, frictional performance

CLC Number: 

  • TQ340

Tab.1

Different oiling process condition"

试样
编号
油剂质量
浓度/(g·L-1)
m(固态L):
m(固态A)
上油温
度/℃
0#
1# 6 29/71 50
2# 6 29/71 65
3# 6 29/71 80
4# 4 29/71 65
5# 6 29/71 65
6# 8 29/71 65
7# 6 29/71 65
8# 6 31/69 65
9# 6 33/67 65

Fig.1

SEM images of Lyocell fibers treated with different concentrations(×5 000)"

Tab.2

Influence of oil concentration on mechanical properties of Lyocell fiber"

试样
编号
油剂质量
浓度/(g·L-1)
含油
率/%
断裂伸
率/%
断裂强度/
(cN·dtex-1)
0# 0 0 12.03 4.20
4# 4 0.36 11.62 4.01
5# 6 0.47 11.38 3.92
6# 8 0.56 10.96 3.86

Tab.3

Influence of oil concentration on friction performance of Lyocell Fiber"

试样
编号
含油
率/%
纤维与金属间 纤维之间
μs μd μs μd μs/μd
0# - 0.122 8 0.169 0 0.151 8 0.151 4 1.00
4# 0.36 0.125 2 0.177 5 0.156 5 0.150 8 1.04
5# 0.47 0.128 5 0.178 3 0.157 6 0.149 2 1.06
6# 0.56 0.133 5 0.179 0 0.158 6 0.138 6 1.14

Tab.4

Influence of oil mixing ratio on friction performance of Lyocell fiber"

试样
编号
m(固态L):
m(固态A)
含油
率/%
纤维与金属间 纤维之间
μs μd μs μd μs/μd
0# - 0 0.1288 0.1690 0.1518 0.1514 1.00
7# 29:71 0.47 0.1277 0.1699 0.1622 0.1519 1.07
8# 31:69 0.45 0.1262 0.1818 0.1753 0.1521 1.15
9# 33:67 0.47 0.1280 0.1790 0.1618 0.1520 1.06

Tab.5

Influence of oil mixing ratio on volume resistivity of Lyocell fiber"

试样
编号
m(固态L):
m(固态A)
含油率/% 体积比电
阻/(Ω·cm)
0# - 0 1.33×1011
7# 29:71 0.47 6.23×1010
8# 31:69 0.45 5.66×109
9# 33:67 0.47 9.84×109

Tab.6

Effect of oiling temperature on friction properties of Lyocell fiber"

试样
编号
温度/
含油
率/%
纤维与金属间 纤维之间
μs μd μs μd μs/μd
0# - - 0.128 8 0.169 0 0.151 8 0.151 4 1.00
1# 50 0.40 0.129 9 0.171 4 0.148 1 0.144 3 1.03
2# 65 0.47 0.128 5 0.170 4 0.149 7 0.142 1 1.15
3# 80 0.53 0.127 5 0.172 2 0.154 8 0.132 3 1.17

Tab.7

Effect of oiling temperature on cohesiveness of Lyocell fiber"

试样
编号
温度/
含油
率/%
体积比电阻/
(Ω·cm)
抱合
力/cN
ABS
0# - - 1.33×1011 140.6 -1 820
1# 50 0.40 9.23×1010 175.4 -186
2# 65 0.47 9.85×1010 223.0 -160
3# 80 0.55 9.15×1010 230.2 -165
[1] CARRILLO F, COLOM X, CANAVATE X. Properties of regenerated cellulose Lyocell fiber-reinforced composites[J]. Journal of Reinforced Plastics & Composites, 2010, 29(3): 359-371.
[2] 刘旭钊. 油剂对碳腈氯纶纤维可纺性的影响[D]. 天津:天津工业大学, 2017:11-39.
LIU Xuzhao. Influence of spinning oil on the spinning performance of caron AN-VDC fiber[D]. Tianjin: Tiangong University, 2017:11-39.
[3] 姜万峰. 油剂特性对碳纤维灰分含量影响的研究[D]. 北京:北京化工大学, 2020,31-59.
JIANG Wanfeng. Study on the influence of oil characteristics on the ash content of carbon fibers[D]. Beijing: Beijing University of Chemical Technology, 2020:31-59.
[4] 杨峰, 李静, 张明敬. 半连续纺粘胶长丝油剂试验分析[J]. 人造纤维, 2005, 35(3): 11-12.
YANG Feng, LI Jing, ZHAG Mingjing. Test and analysis of finishing agent for semi-continuous spunbond filament[J]. Artificial Fibre, 2005, 35(3): 11-12.
[5] 李立凤, 陈美玉, 陈欣, 等. 加工工艺对聚酰胺1012纤维摩擦性能的影响[J]. 纺织高校基础科学学报, 2020, 33(4): 17-24.
LI Lifeng, CHEN Meiyu, CHEN Xin, et al. Effect of processing techniques on the friction properties of polyamide 1012 filament[J]. Basic Science Journal of Textile Universities, 2020, 33(4): 17-24.
[6] 戴伊萍, 杨毓莹, 舒建生. 涤纶短纤维油剂的润湿性研究[J]. 合成纤维工业, 2004, 27(3): 19-21.
DAI Yiping, YANG Yuying, SHU Jiansheng. Study on wettability of finidhes for PET staple fiber[J]. China Synthetic Fiber Industry, 2004, 27(3): 19-21.
[7] 钟敏, 舒建生, 侯海育. 耐候性涤纶短纤油剂的研制与应用[J]. 合成纤维工业, 2021, 44(5): 37-42.
ZHONG Min, SHU Jiansheng, HOU Haiyu. Development and application of weather-resistant spinning finish for polyester staple fiber[J]. China Synthetic Fiber Industry, 2021, 44(5): 37-42.
[8] 强杉杉. 高性能碳纤维专用油剂及上油工艺的研究[D]. 上海:东华大学, 2008:43-72.
QIANG Shanshan. Study on oil finishi for high performance carbon fiber[D]. Shanghai: Donghua University, 2008:43-72.
[9] 顾丹凤. 聚丙烯腈基碳纤维原丝用油剂性能评价[J]. 石油化工技术与经济, 2016, 32(5): 24-26.
GU Danfeng. The evaluation of oiling agent of PAN-based carbon fiber precursor[J]. Technology & Economics in Petrochemicals, 2016, 32(5): 24-26.
[10] 刘洋, 梁聪, 徐莫临, 等. 连续纺粘胶长丝油剂性能的研究[J]. 人造纤维, 2019, 49(6): 8-10+4.
LIU Yang, LIANG Cong, XU Molin, et al. Study on the properties of continuous spunbond filament finish[J]. Artificial Fibre, 2019, 49(6): 8-10+4.
[11] 刘辉. 再生纤维素纤维油剂的剖析和复配[J]. 煤炭与化工, 2016, 39(5): 31-33.
LIU Hui. Analysis and compound distribution of regenerated cellulose fiber and agent[J]. Coal and Chemical Industry, 2016, 39(5): 31-33.
[12] 郑帼, 孙波泉. 二元体系油剂对聚酯短纤维性能的影响[J]. 纺织学报, 2006, 27(11): 70-74.
ZHENG Guo, SUN Boquan. Influence of binary oil on properties of PET staple fiber[J]. Journal of Textile Research, 2006, 27(11): 70-74.
[1] JIN Hong, ZHANG Yue, ZHANG Yumei, WANG Huaping. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. Journal of Textile Research, 2021, 42(10): 1-7.
[2] PAN Yile, QIAN Liying, XU Jigang, HE Beihai, LI Junrong. Analysis on factors influencing solution of Lyocell fiber spinning pulp [J]. Journal of Textile Research, 2021, 42(10): 27-33.
[3] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[4] HUANG Wei, CHENG Chunzu, ZHANG Jiayu, ZHANG Chenxi, CHENG Min, XU Jigang, LIU Yunchong. Preparation and characterization of high fibrillation Lyocell fiber [J]. Journal of Textile Research, 2021, 42(06): 41-45.
[5] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[6] . Preparation of phase change Lyocell fiber and influence of microcapsule on solvent recovery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 1-5.
[7] . Status and development research of Lyocell fiber at home and abroad [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 164-170.
[8] . Preparation and properties of carbon black/Lyocell cellulose membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 28-32.
[9] . Preparation of 4-Methylmopholine N-oxide based ultrafine carbon black  [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 75-79.
[10] WANG Jun;WANG Rongwu;WU Xiongying;;XIE Huosheng. Characteristic differences of Lyocell fiber longitudinal image in different textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 19-23.
[11] 东华大学纤维材料改性国家重点实验室. Effect of super-high molecular weight cellulose on the spinning properties of Lyocell [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 5-9.
[12] ZHU Jun;ZHANG Hong-mei. Processing knitting yarn of Lyocell fiber with rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[2] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[3] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[4] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[5] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[6] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[7] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[8] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(09): 52 -58 .
[9] HU Qiaole, BIAN Guofeng, QIU Yiping, WEI Yi, XU Zhenzhen. Sound insulation properties of honeycomb sandwich structure composite for high-speed train floors[J]. Journal of Textile Research, 2021, 42(10): 75 -83 .
[10] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission[J]. Journal of Textile Research, 2022, 43(01): 36 -42 .