Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 79-86.doi: 10.13475/j.fzxb.20211007408
• Fiber Materials • Previous Articles Next Articles
PU Haihong1, HE Pengxin1, SONG Baiqing1, ZHAO Dingying1, LI Xinfeng1, ZHANG Tianyi1, MA Jianhua1,2()
CLC Number:
[1] |
SHANG Y Y, WANG C H, HE X D, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12: 401-409.
doi: 10.1016/j.nanoen.2014.11.048 |
[2] |
KIM J, KIM M, LEE M, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017, 8(1) 838-843.
doi: 10.1038/s41467-017-00960-3 |
[3] |
LEE Y H, KIM J S, NOH J, et al. Wearable textile battery rechargeable by solar energy[J]. Nano Letters, 2013, 13(11): 5753-5761.
doi: 10.1021/nl403860k |
[4] |
ZHOU J, LI R, LIU S, et al. Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films[J]. Journal of Applied Polymer Science, 2009, 111(5): 2477-2485.
doi: 10.1002/app.29236 |
[5] |
MEHDI Y, HASSAN N, MOHAMMAD A. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides[J]. International Journal of Biological Macromolecules, 2015, 79: 269-277.
doi: 10.1016/j.ijbiomac.2015.05.002 pmid: 25964179 |
[6] |
HUANG H D, LIU C Y, ZUOU D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2015, 3(9): 4983-4991.
doi: 10.1039/C4TA05998K |
[7] |
YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98: 50-57.
doi: 10.1016/j.carbon.2015.10.082 |
[8] |
KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie-International Edition, 2005, 44(22): 3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454 |
[9] |
LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590 (7844): 47-56.
doi: 10.1038/s41586-020-03167-7 |
[10] | HENNIGES U, SCHIEHSER S, ROSENAU T, et al. Cellulose solubility: dissolution and analysis of "problematic" cellulose pulps in the solvent system DMAC/LiCl[J]. ACS Symposium Series, 2010, 1033: 165-177. |
[11] |
YASMIN J, ALEXANDER K, SUMAN S, et al. Theoretical and experimental study of dissolution mechanism of cellulose[J]. Journal of Molecular Liquids, 2020.DOI:10.1016/j.molliq.2020.113450.
doi: 10.1016/j.molliq.2020.113450 |
[12] |
WANG S, LU A, ZHANG L N. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169-180.
doi: 10.1016/j.progpolymsci.2015.07.003 |
[13] | 王琳琳, 魏立纲, 马英冲, 等. 1-丁基-3-甲基咪唑氯盐离子液体水溶液对纤维素的作用[J]. 化工学报, 2015, 66(S1): 32-37. |
WANG Linlin, WEI Ligang, MA Yingchong, et al. The effect of 1-butyl-3-methylimidazole chloride salt ionic aqueous solution on cellulose[J]. Journal of Chemical Engineering, 2015, 66(S1): 32-37. | |
[14] |
KRUGLY E, PAULIUKAITYTE I, CIUZAS D, et al. Cellulose electrospinning from ionic liquids: the effects of ionic liquid removal on the fiber morphology[J]. Carbohydrate Polymers, 2022, 285: 119260-119270.
doi: 10.1016/j.carbpol.2022.119260 |
[15] | 吕昂, 张俐娜. 纤维素溶剂研究进展[J]. 高分子学报, 2007(10): 937-944. |
LÜ Ang, ZHANG Li'na. Advances in cellulose solvent research[J]. Acta Polymerica Sinica, 2007(10): 937-944. | |
[16] |
KIM J, KIM M, LEE M, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017, 8(1): 838-843.
doi: 10.1038/s41467-017-00960-3 |
[17] |
SHISHBOR M, POURANIAN M R. Tuning the mechanical and adhesion properties of carbon nanotubes using aligned cellulose wrap (cellulose nanotube): a molecular dynamics study[J]. Nanomaterials, 2020, 10(1): 154-162.
doi: 10.3390/nano10010154 |
[18] | 孙义明, 孟庆浩, 彭少贤, 等. 金属填充聚合物功能材料研究进展[J]. 塑料科技, 2004(4): 31-34. |
SUN Yiming, MENG Qinghao, PENG Shaoxian, et al. Advances in metal-filled polymer functional materials[J]. Plastics Science and Technology, 2004(4): 31-34. | |
[19] |
JANG J, ZHOU H, LEE J, et al. Heat scanning for the fabrication of conductive fibers[J]. Polymers, 2021, 13(9): 1405-1417.
doi: 10.3390/polym13091405 |
[20] | 吕少一, 傅峰, 王思群, 等. 纳米纤维素基导电复合材料研究进展[J]. 林业科学, 2015, 51(10): 117-125. |
LÜ Shaoyi, FU Feng, WANG Siqun, et al. Advances in nanocellulose-based conductive composites[J]. Scientia Silvae Sinicae, 2015, 51(10): 117-125. | |
[21] |
KIM S W, KWON S N, NA S I. Microstructure and chemical analysis data of polyurethane-silver nanoparticles/graphene nanoplates composite fibers[J]. Data in Brief, 2019. DOI:10.1016/j.dib.2019.104107.
doi: 10.1016/j.dib.2019.104107 |
[22] | 胡圣飞, 张帆, 张荣, 等. 石墨烯表面改性及其在聚合物导电复合材料中的应用研究[J]. 高分子材料科学与工程, 2017, 33(8):184-190. |
HU Shengfei, ZHANG Fan, ZHANG Rong, et al. Study on surface modification of graphene and its application in polymeric conductive composites[J]. Polymer Materials Science and Engineering, 2017, 33(8): 184-190. | |
[23] | 金二锁, 杨芳, 朱阳阳, 等. 碱处理后纤维素纳米晶体的XRD、FT-IR和XPS分析[J]. 纤维素科学与技术, 2016, 24(3): 1-6. |
JIN Ersuo, YANG Fang, ZHU Yangyang, et al. XRD, FT-IR and XPS analysis of cellulose nanocrystals after alkali treatment[J]. Cellulose Science and Technology, 2016, 24(3): 1-6. | |
[24] |
JIANG Z, CHEN D, YU Y, et al. Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/ dissolved in ammonium/dimethyl sulfoxide mixed solvent[J]. RSC Advances, 2017, 7(4): 2186-2192.
doi: 10.1039/C6RA25318K |
[25] |
QI H, LIU J, GAO S, et al. Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline-urea solution[J]. Journal of Materials Chemistry A, 2013, 1(6): 2161-2168.
doi: 10.1039/C2TA00882C |
[26] |
PETRA P, TIMO A, TOBIAS V, et al. Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes[J]. Composites Science and Technology, 2009, 70(2): 343-349.
doi: 10.1016/j.compscitech.2009.11.005 |
[27] | ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021, 15(7): 183-194. |
[1] | ZHANG Jing, HUANG Zhiheng, NIU Guangliang, LIANG Sheng, YANG Lüyun, WEI Lei, ZHOU Shifeng, HOU Chong, TAO Guangming. Review on thermal-drawn multimaterial fiber optoelectronics [J]. Journal of Textile Research, 2023, 44(01): 11-20. |
[2] | CHEN Chen, HAN Yi, SUN Haiyan, YAO Chengkai, GAO Chao. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof [J]. Journal of Textile Research, 2023, 44(01): 47-55. |
[3] | DAI Lu, HU Zexu, WANG Yan, ZHOU Zhe, ZHANG Fan, ZHU Meifang. Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers [J]. Journal of Textile Research, 2023, 44(01): 71-78. |
[4] | CHU Yanyan, LI Shichen, CHEN Chao, LIU Yingying, HUANG Weihan, ZHANG Yue, CHEN Xiaogang. Research progress in bulletproof flexible textile materials and structures [J]. Journal of Textile Research, 2022, 43(12): 203-212. |
[5] | QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132. |
[6] | ZHANG Tianyun, SHI Xiaohong, ZHANG Le, WANG Fujuan, XIE Yi'na, YANG Liang, RAN Fen. Bacterial cellulose/polyacrylamide hydrogel polymer electrolyte with dual-crosslinked network based on ionic liquid synergistic method [J]. Journal of Textile Research, 2022, 43(11): 22-28. |
[7] | LOU Huiqing, ZHU Feichao, LI Leilei, DING Huilong, PU Dandan, WANG Xiangfei. Preparation and electrochemical performance of composite carbon nanotube/Ni/polyaniline fibrous supercapacitor [J]. Journal of Textile Research, 2022, 43(11): 35-40. |
[8] | XIAO Yuan, LI Qian, ZHANG Wei, HU Hanchun, GUO Xinlei. Influencing factors on flexible fabric-based electrical circuit formation by micro-jet printed primary cell replacement deposition [J]. Journal of Textile Research, 2022, 43(10): 89-96. |
[9] | DU Xuan, DING Changkun, YUE Chengfei, SU Jieliang, YAN Xuhuan, CHENG Bowen. Effect of coagulation bath on structure and properties of regenerated collagen fibers [J]. Journal of Textile Research, 2022, 43(09): 58-63. |
[10] | YANG Chunli, ZHOU Weixian, LIANG Jinglong, LIN Guizhen, LIU Jie, NI Yanpeng, LIU Yun, SHANG Shenglong, ZHU Ping. Rapid preparation and properties of structural colored calcium alginate fibers triggered by magnetic field [J]. Journal of Textile Research, 2022, 43(09): 64-69. |
[11] | HE Qi, LI Junling, JIN Gaoling, LIU Jin, KE Fuyou, CHEN Ye, WANG Huaping. Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber [J]. Journal of Textile Research, 2022, 43(09): 70-75. |
[12] | GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39. |
[13] | ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47. |
[14] | ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8. |
[15] | XUE Chao, ZHU Hao, YANG Xiaochuan, REN Yu, LIU Wanwan. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers [J]. Journal of Textile Research, 2022, 43(07): 29-35. |
|