Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 81-88.doi: 10.13475/j.fzxb.20211101008

• Textile Engineering • Previous Articles     Next Articles

Effect of sliver blending parameters on blending irregularity of article blended yarn

CAO Qiaoli1, LI Hao1, QIAN Lili1, YU Chongwen1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-11-01 Revised:2021-12-03 Online:2022-02-15 Published:2022-03-15
  • Contact: YU Chongwen E-mail:yucw@dhu.edu.cn

Abstract:

Poor blending uniformity of different component fibers in yarn leads to the decrease in strength, the deterioration of the strength unevenness, and the increase of the chromatic aberration of the fabric. In order to explore the influence of sliver blending process parameters on the blending uniformity, the index of irregularity blending (IBI) was improved to characterize the blending uniformity, and the simulation of the movement of fibers during sliver blending process was analyzed to obtain the distribution regularity of fibers in the mixed sliver. In this study, the influence of different sliver mixing process parameters such as the number of combined slivers, the passages of slivers, arrangement mode, and blending ratio, on the uniformity of yarn sliver mixing was discussed, and the results were verified by experiments. The research results show that the improved IBI can evaluate more accurately the uniformity of blended slivers. The more the number of drawn passages and the number of combined slivers, the more uniform is the blending; the smaller the linear density of feeding sliver, the easier it is to carry out uniform blending. The IBI becomes less while the feeding sliver arranged at intervals and blending ratio of component close to 50∶50. The draft ratio and the distance of roller center do not show obvious effect on the IBI. The simulation results are in good agreement with the tested results.

Key words: sliver blending, process parameter, blending uniformity, index of blending irregularity, simulation

CLC Number: 

  • TS104.5

Fig.1

Diagram of fiber distribution in sliver. (a) Cross section; (b) Longitudinal view"

Tab.1

Specifications of fibers and slivers"

纤维
颜色
纱条
定量/
(g·(10 m)-1)
平均截
面根数
纱条
半径/
mm
纤维平
均线密
度/tex
纤维平
均长度/
mm
白色(W) 7.30 1 094 6 0.667 75
黑色(B) 7.08 1 061 6 0.667 75

Tab.2

Experiment program of sliver blending"

样品
编号
每道并合根数n
(B涤纶条数+
W涤纶条数)
混纺比
B涤纶条含量(%)/
W涤纶条含量(%)
头道并条喂入的
颜色排列方式
牵伸倍数
(头道×2道×3道×
4道×(5道))
罗拉中心距/mm
(头道×2道×3道×
4道×(5道))
1# 1+1 49.2/50.8 WB 2×2×2×2(×2)
2# 2+2 WBWB 4×4×4×4(×4)
3# 3+3 WBWBWB 6×6×6×6(×6)
4# 4+4 WBWBWBWB 8×8×8×8(×8)
5# 4+4 49.2/50.8 WWBBWWBB 8×8×8×8 95×95×95×
6# 4+4 WWWWBBBB 95(×95)
7# 1+7 12.8/87.2 WWWBWWWW 8×8×8×8
8# 1+5 17.1/82.9 WWBWWW 6×6×6×6
9# 2+6 25.6/74.4 WWBWWBWW 8×8×8×8
10# 2+4 34.0/66.0 WBWWBW 6×6×6×6
11# 3+5 38.2/61.8 WBWWBWWB 8×8×8×8

Fig.2

Cross-sectional image of blended sliver. (a) Original image;(b) Divide cells"

Tab.3

Simulation scheme"

样品
编号
头道纱
条截面
平均纤
维根数
牵伸倍数
(头道×
2道)
罗拉中
心距
(头道×
2道)/
mm
并合根数
(B+W)
头道喂入
颜色排列
方式(混
纺比)
12# 500 6×3
13# 1 000 6×6 95×95
14# 2 000 6×12
15# 1 000 6×3 95×95 3+3 WBWBWB
(50/50)
16# 6×12
17# 80×80
18# 1 000 6×6 95×95
19# 100×100

Fig.3

Relationship between number of combined slivers and blending irregularity. (a)Tested; (b)Simulated"

Fig.4

Relationship between number of combined slivers and IBI. (a)Tested;(b)Simulated"

Fig.5

Relationship between feeding arrangement of first passage and blending irregularity. (a)Tested; (b)Simulated"

Fig.6

Relationship between feeding arrangement of first passage and IBI. (a)Tested;(b)Simulated"

Fig.7

Relationship between blending ratio and blending irregularity. (a)Tested;(b)Simulated"

Fig.8

Relationship between blending ratio and IBI. (a)Tested;(b)Simulated"

Fig.9

Relationship between draft multiple, weight of sliver and blending irregularity, IBI. (a)Draft multiple;(b)Weight of sliver"

Fig.10

Relationship between distance of roller center, blending irregularity and IBI"

[1] KRUCINNSKA I. Fibre blending irregularities in cross sections and on yarn surfaces in relation to yarn properties[J]. Textile Research Journal, 1988, 58(5): 291-298.
doi: 10.1177/004051758805800508
[2] 吴翼翔. 涤棉混纺高支纱混合方法的实践[J]. 纺织报告, 2005, 4(8): 28-32.
WU Yixiang. Practice of blending method of polyester-cotton blended high count yarn[J]. Textile Reports, 2005, 4(8): 28-32.
[3] 高晶, 孙卫国. 染色棉纤维与本色棉纤维混纺纱的试制[J]. 棉纺织技术, 2002, 30(12): 16-18.
GAO Jing, SUN Weiguo. Trial production of dyed cotton fiber and natural cotton fiber blended yarn[J]. Cotton Textile Technology, 2002, 30(12): 16-18.
[4] WADA O. Control of fiber form and yarn and fabric structure[J]. Journal of The Textile Institute, 1992, 83(3): 322-347.
doi: 10.1080/00405009208631207
[5] WATANABE A, KUROSAKI S N, KONDA F, et al. Analysis of blend irregularity in yarns using image processing: part II:applying the system to actual blended yarns[J]. Textile Research Journal, 1992, 62(12): 729-735.
doi: 10.1177/004051759206201205
[6] NAJAR S S, AMANI, HASANI H. Analysis of blend irregularities and fiber migration Index of wool/acrylic blended worsted yarns by using an image-analysis technique[J]. Journal of The Textile Institute, 2003, 94(3/4): 177-185.
doi: 10.1080/00405000308630606
[7] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 221-222.
YU Weidong. Textile material science[M]. Beijing: China Textile & Apparel Press, 2006:221-222.
[8] COPLAN M J. A study of blended woolen structures: part IV: some analytical methods for blend determi-nation[J]. Textile Research Journal, 1958, 28(11): 956-964.
doi: 10.1177/004051755802801108
[9] COPLAN M J, KLEIN W G. A study of blended woolen structures: Part I: statistics of the ideal random blended yarn[J]. Textile Research Journal, 1955, 25(9): 743-755.
doi: 10.1177/004051755502500901
[10] COPLAN M J, KLEIN W G. A study of blended woolen structures: part III: amplification and extended application of the theory of blend statistics[J]. Textile Research Journal, 1956, 26(12): 914-924.
doi: 10.1177/004051755602601202
[11] HAMPSON A G. Statistical tests of colour blending in yarn and rovings[J]. Journal of The Textile Institute, 1955, 46(6): 377-390.
[12] COPLAN M J, KLEIN W G. A study of blended woolen structures: part I : statistics of the ideal random blended yarn[J]. Textile Research Journal, 1955, 46(9): 743-755.
doi: 10.1177/004051757604601009
[13] 严灏景, 李再清. 混纺纱条混和不匀公式的探讨[J]. 纺织学报, 1980, 1(1): 1-6, 78.
YAN Haojing, LI Zaiqing. Discussion on formula of unevenness of blended yarn sliver[J]. Journal of Textile Research, 1980, 1(1): 1-6, 78.
[14] 林倩. 纤维几何特征对成纱条干不匀的影响分析[D]. 上海: 东华大学, 2011: 81-83.
LIN Qian. Effect of fiber geometrical characteristics on yarn unevenness[D]. Shanghai: Donghua University, 2011: 81-83.
[15] 于永玲, 徐铭九. 混并机混和效果评定方法的研究[J]. 纺织学报, 1987, 8(2): 73-77,66.
YU Yongling, XU Mingjiu. Study on evaluation method of mixing effect of mixer[J]. Journal of Textile Research, 1987, 8(2): 73-77, 66.
[16] 张连房, 李天恒, 杨庆斌. 混纺纱混纺不匀率测试法的理论商讨[J]. 纺织学报, 1990, 11(3): 18-20, 2.
ZHANG Lianfang, LI Tianheng, YANG Qingbin. Theoretical discussion on testing method of blend unevenness of blended yarn[J]. Journal of Textile Research, 1990, 11(3): 18-20, 2.
[17] 张树深. 纤维混纺比率不匀的数理统计学特性[J]. 纺织科学研究, 1987, 4(1): 35-38.
ZHANG Shushen. Mathematical statistics of fiber blending rate irregularity[J]. Textile Science Research, 1987, 4(1): 35-38.
[18] 罗建红, 刘光彬, 刘晓东. 不同混和方式对色纺纱混和均匀性的影响分析[J]. 棉纺织技术, 2015, 43(9): 42-45.
LUO Jianhong, LIU Guangbin, LIU Xiaodong. Influence analyses of different blending method on blending uniformity colored spun yarn[J]. Cotton Textile Technology, 2015, 43(9): 42-45.
[19] 邓茜茜, 杨瑞华, 徐亚亚, 等. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(7): 31-37.
DENG Qianqian, YANG Ruihua, XU Yaya, et al. Study on mixing uniformity of fibers in rotor-spun mixed yarns[J]. Journal of Textile Research, 2019, 40(7): 31-37.
[20] 杨瑞华, 王卓, 邓茜茜, 等. 多通道转杯纺羊毛混色织物的Friele模型[J]. 服装学报, 2020, 5(1): 1-5.
YANG Ruihua, WANG Zhuo, DENG Qianqian, et al. Friele model of color mixing wool fabric produced by multi-channel rotor spun yarn[J]. Journal of Clothing Research, 2020, 5(1): 1-5.
[21] JIANG Z, KUANG X Q, YANG J P, et al. Simulation on Fiber Random Arrangement in the Yarn Part II: Joint Effect of Fiber Length and Fineness Distribution[J]. Journal of The Textile Institute, 2017, 108(3): 347-352.
doi: 10.1080/00405000.2016.1166821
[22] SUN N, YU C W. Simulation on roller drafting based on hook fiber arrangement in the sliver[J]. Fibers and Polymers, 2021. DOI: 10.1007/s12221-021-0496-x.
doi: 10.1007/s12221-021-0496-x
[23] SUN N, YU C W, YANG J P. Modeling fiber arrangement and distribution during the roller drafting process[J]. Textile Research Journal, 2019, 89(19/20): 4295-4305.
doi: 10.1177/0040517519829926
[24] 贺雅勤, 毕雪蓉, 钱希茜, 等. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(6): 85-90.
HE Yaqin, BI Xuerong, QIAN Xixi, et al. Simulation study on effect of drafting on sliver unevenness[J]. Journal of Textile Research, 2021, 42(6): 85-90.
[25] CAO Qiaoli, QIAN Lili, LI Hao, et al. Simulation of sliver blending and evaluation of blending irregularity[J]. Textile Research Journal, 2021. DOI: 10.1177/00405175211028.
doi: 10.1177/00405175211028
[1] HAN Zhixin, WU Wei, WANG Jian, XU Hong, MAO Zhiping. Study on solubility of disperse dyes in supercritical carbon dioxide fluid [J]. Journal of Textile Research, 2022, 43(01): 153-160.
[2] JIANG Xuewei, TIAN Runyu, LU Fangxiao, ZHANG Yi. Improved clothing recommendation algorithm based on simulation scoring [J]. Journal of Textile Research, 2021, 42(12): 138-144.
[3] ZOU Ya'nan, XIA Fenglin, DONG Zhijia, HUANG Mengting, CHU Kaiyuan. Structural design and implementation of warp-knitted fully-formed neck sleeves [J]. Journal of Textile Research, 2021, 42(12): 76-80.
[4] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[5] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[6] MOU Haolei, XIE Jiang, PEI Hui, FENG Zhenyu, GENG Hongzhang. Ballistic impact tests and numerical simulation of aramid fabric and containment ring [J]. Journal of Textile Research, 2021, 42(11): 56-63.
[7] JIN Hong, ZHANG Yue, ZHANG Yumei, WANG Huaping. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. Journal of Textile Research, 2021, 42(10): 1-7.
[8] TIAN Miao, LEI Ye, WANG Yunyi, LI Jun, ZHANG Xianghui. Application of age simulation suit for research on gait stability [J]. Journal of Textile Research, 2021, 42(08): 144-148.
[9] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies [J]. Journal of Textile Research, 2021, 42(07): 95-100.
[10] ZHENG Peixiao, JIANG Gaoming. Three-dimensional simulation of weft-knitted jacquard fabric based on WebGL [J]. Journal of Textile Research, 2021, 42(05): 59-65.
[11] JIANG Hongxia, HUANG Zhiwei, LIU Jihong. Virtual display of cheongsam based on modularization [J]. Journal of Textile Research, 2021, 42(05): 138-142.
[12] JIANG Junying, GAO Jing, ZHANG Jian. Backing fabric selection and leak-proof performance of anastomotic reinforcement repair component [J]. Journal of Textile Research, 2021, 42(04): 69-73.
[13] ZHANG Suning, WANG Ze, MA Dali. Simulation and optimization of Flexsim shirt assembly line based on improved ant colony algorithm [J]. Journal of Textile Research, 2021, 42(03): 155-160.
[14] SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184.
[15] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[2] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[3] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[4] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[5] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[6] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials[J]. Journal of Textile Research, 2020, 41(04): 167 -173 .
[7] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[8] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[9] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(09): 52 -58 .
[10] HU Qiaole, BIAN Guofeng, QIU Yiping, WEI Yi, XU Zhenzhen. Sound insulation properties of honeycomb sandwich structure composite for high-speed train floors[J]. Journal of Textile Research, 2021, 42(10): 75 -83 .