Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (07): 72-78.doi: 10.13475/j.fzxb.20211101201
• Textile Engineering • Previous Articles Next Articles
YU Xuliang, CONG Honglian(), SUN Fei, DONG Zhijia
CLC Number:
[1] | 周艳卫. 基于仿生学的针织面料结构开发及其热湿舒适性能研究[D]. 上海: 东华大学, 2010: 1-7. |
ZHOU Yanwei. Development of knitted fabric structure based on bionics and study on its thermal and wet comfort properties[D]. Shanghai: Donghua University, 2010: 1-7. | |
[2] | 万晶, 徐丽慧, 潘虹. 基于SiO2-TiO2复合气凝胶制备超疏水光催化自清洁棉织物[J]. 印染, 2021, 47(6): 19-24. |
WAN Jing, XU Lihui, PAN Hong. Preparation of super hydrophobic photocatalytic self-cleaning cotton fabric based on SiO2-titanium dioxide composite aerogel[J]. China Dyeing & Finishing, 2021, 47(6): 19-24. | |
[3] |
LI P, ZHANG B, ZHAO H, et al. Unidirectional droplet transport on the biofabricated butterfly wing[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2018, 34(41): 12482-12487.
doi: 10.1021/acs.langmuir.8b02550 |
[4] | JU J, BAI H, ZHENG Y. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3(1): 1-6. |
[5] |
LABONTE D, ROBINSON A, BAUER U, et al. Disentangling the role of surface topography and intrinsic wettability in the prey capture mechanism of nepenthes pitcher plants[J]. Acta Biomaterialia, 2021, 119: 225-233.
doi: 10.1016/j.actbio.2020.11.005 pmid: 33189952 |
[6] |
LIU J, OUYANG Y, QIU R, et al. Compositing fluid infused in super hydrophobic Cu(OH)2 nano-needle matrix to inhibit abiotic and micro biologically induced corrosion of Cu in seawater environment[J]. Progress in Organic Coatings: An International Review Journal, 2020. DOI: 10.1016/j.porgcoat.2020.105542.
doi: 10.1016/j.porgcoat.2020.105542 |
[7] | 刘光, 张鹏飞, 陈华伟. 载能电刀仿生防粘表面技术[J]. 机械工程学报, 2008, 54(17): 21-27. |
LIU Guang, ZHANG Pengfei, CHEN Huawei. Biomimetic anti-stick surface technology of energy-carrying electric knife[J]. Journal of Mechanical Engineering, 2008, 54(17): 21-27. | |
[8] | 胡海豹, 曹刚, 张梦卓. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193. |
HU Haibao, CAO Gang, ZHANG Mengzhuo. Progress in directional movement of liquid droplets on solid surfaces[J]. Materials Reports, 2020, 34(13): 13175-13193. | |
[9] | 乔燕芳, 王利强. 定向防粘附润滑涂层制备及其性能[J]. 精细化工, 2019, 36(10): 2023-2027, 2051. |
QIAO Yanfang, WANG Liqiang. Preparation and properties of directional anti-adhesive lubrication coating[J]. Fine Chemicals, 2019, 36(10): 2023-2027, 2051. | |
[10] | 王立新, 吴树静, 李山山. 工程仿生领域猪笼草叶笼研究现状及发展趋势[J]. 河北科技大学学报, 2018, 39(3): 221-231. |
WANG Lixin, WU Shujing, LI Shanshan. Research status and development trend of pitcher grass cage in the field of engineering bionics[J]. Journal of Hebei University of Science and Technology, 2018, 39(3): 221-231. | |
[11] |
王树涛. 猪笼草口缘超湿滑的揭密: Jiang-Taylor毛细升与液体定向输运[J]. 化学进展, 2017, 29(1): 3-4.
doi: 10.7536/PC161236 |
WANG Shutao. Uncovering the super-wet and slippery edges of the pitcher grass: Jiang-Taylor capillary lifting and directed transport of liquids[J]. Progress in Chemistry, 2017, 29(1): 3-4.
doi: 10.7536/PC161236 |
|
[12] | 陈华伟, 张鹏飞, 张力文. 猪笼草口缘区表面液体单方向连续搬运机制[J]. 中国科学基金, 2016, 30(3): 217-219. |
CHEN Huawei, ZHANG Pengfei, ZHANG Liwen. Unidirectional continuous transport mechanism of liquid on pork cage grass mouth edge[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 217-219. | |
[13] | 李储鑫. 仿生猪笼草结构调控的液体定向输运的研究[D]. 北京: 中国科学院大学, 2019: 6-13. |
LI Chuxin. Study on directed transport of liquid controlled by structure of biomimetic pitcher grass[D]. Beijing: University of Chinese Academy of Sciences, 2019:6-13. | |
[14] | 李龙阳. 仿生沟槽及超疏水表面减阻设计研究[D]. 太原: 中北大学, 2015: 2-14. |
LI Longyang. Study on drag reduction design of biomimetic grooves and superhydrophobic surfaces[D]. Taiyuan: North University of China, 2015: 2-14. | |
[15] |
SUSAN Daniel, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633-636.
pmid: 11158672 |
[16] |
HIGUERA F J, MEDINA A, LINAN A. Capillary rise of a liquid between two vertical plates making a small angle[J]. Physics of Fluids, 2008.DOI:10.1063/1.3000425.
doi: 10.1063/1.3000425 |
[17] | 高香玉. 液体在微结构表面的定向润湿行为研究[D]. 北京: 北京化工大学, 2017: 4-19. |
GAO Xiangyu. Study on directional wetting behavior of liquid on micro-structure surface[D]. Beijing: Beijing University of Chemical Technology, 2017: 4-19. | |
[18] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophobic micronanofibers/cotton fiber core-spun fabrics[J]. Journal of Donghua University (Natural Science), 2020, 46 (5): 694-702. | |
[19] | 张泽军. 全成型3D针织鞋面鞋口编织方法[J]. 纺织科技进展, 2018(6): 4-8. |
ZHANG Zejun. Full-formed 3D knitted shoe upper and shoe opening braiding method[J]. Progress in Textile Science & Technology, 2018(6): 4-8. |
[1] | SHI Weimin, JIAN Qiang, LI Jianqiang, RU Xin, PENG Laihu. Defect detection of jacquard knitted fabrics based on nonlinear diffusion and multi-feature fusion [J]. Journal of Textile Research, 2023, 44(07): 86-94. |
[2] | XU Ruidong, LIU Hong, WANG Hang, ZHU Shifeng, QU Lijun, TIAN Mingwei. Construction and strain sensing properties of an ionic hydrogel composite fabric [J]. Journal of Textile Research, 2023, 44(06): 137-143. |
[3] | SU Xuzhong, LIANG Qiaomin, WANG Huifeng, ZHANG Di, CUI Yihuai. Wearability of knitted fabrics produced from cotton/bio-based elastic polyester fiber [J]. Journal of Textile Research, 2023, 44(05): 119-124. |
[4] | WANG Yue, WANG Chunhong, XU Lei, LIU Shengkai, LU Chao, WANG Lijian, YANG Lu, ZUO Qi. Development of environmentally friendly knitted fabrics with 3-D moisture conductive structure and performance evaluation on moisture absorption and quick-drying [J]. Journal of Textile Research, 2022, 43(10): 58-64. |
[5] | LI Ningning, ZHANG Zhaohua, XU Suhong, ZHENG Ziyi, LI Xiaoyu. Distribution characteristics of local skin moisture sensitivity of human in thermal environment [J]. Journal of Textile Research, 2022, 43(09): 182-187. |
[6] | WANG Chenlu, MA Jinxing, YANG Yaqing, HAN Xiao, HONG Jianhan, ZHAN Haihua, YANG Shiqian, YAO Shaofang, LIU Jiangqiaona. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 113-118. |
[7] | DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73. |
[8] | QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66. |
[9] | RU Xin, ZHU Wanzhen, SHI Weimin, PENG Laihu. Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution [J]. Journal of Textile Research, 2022, 43(06): 63-69. |
[10] | YANG Liu, LI Yujia, ZHANG Xin, HE Wenjing, TONG Shenghao, MA Lei, ZHANG Yi, ZHANG Ruiyun. Effect of tightness of colored knitted fabrics on color prediction [J]. Journal of Textile Research, 2022, 43(05): 104-108. |
[11] | YU Yukun, SUN Yue, HOU Jue, LIU Zheng, YICK Kitlun. Dynamic finite element modeling and simulation of single layer clothing ease allowance [J]. Journal of Textile Research, 2022, 43(04): 124-132. |
[12] | WANG Jianping, MIAO Mingzhu, SHEN Deyao, YAO Xiaofeng. Development and performance evaluation of knitted fabric with bionic bird feather structure [J]. Journal of Textile Research, 2022, 43(04): 55-61. |
[13] | LIANG Zhuo, JIA Guoxin, REN Jiazhi, LI Jinjian. Deformation and stress analysis on nippers of cotton combing machine [J]. Journal of Textile Research, 2021, 42(12): 145-150. |
[14] | YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131. |
[15] | QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45. |
|