Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 44-52.doi: 10.13475/j.fzxb.20211101309

• Fiber Materials • Previous Articles     Next Articles

Fabrication of fluorescent cellulose nanocrystals hydrogels for chloride ion response

WU Jiayin1,2, WANG Hanchen1,2, HUANG Biao1, LU Qilin1,2()   

  1. 1. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    2. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
  • Received:2021-11-02 Revised:2021-12-08 Online:2022-02-15 Published:2022-03-15
  • Contact: LU Qilin E-mail:qilinlu@mju.edu.cn

Abstract:

In order to avoid the usage of toxic reagents and reduce the high energy consumption and complicated multiple freeze-thaw cycles in the traditional preparation process of PVA composite hydrogels, PVA/F-CNCs/PA fluorescent cellulose nanocrystals hydrogels with good mechanical properties and high sensibility to Cl- were prepared by combining fluorescent cellulose nanocrystals (F-CNCs) and poly(vinyl alcohol) (PVA) through multiple hydrogen bonding under the cross-linking of phytic acid (PA). The fluorescent performance and Cl- sensibility of PVA hydrogel were improved significantly due to the excellent mechanical properties, high fluorescent performance, good biocompatibility and nanometer effect of F-CNCs. When the content of F-CNCs was 0.6 g, the compressive strength of PVA/F-CNCs/PA composite hydrogels was increased by 150%, and the crystallinity and thermal stability were also improved. The composite hydrogels were sensitive to Cl- at low pH, and the fluorescence quenching efficiency showed a linear response in the Cl- concentration range of 0-0.2 mol/L. The results indicated that the prepared fluorescent hydrogels had potential application in the field of Cl- concentration analysis and detection, biological and chemical sensors and disease diagnosis.

Key words: chloride ion response, fluorescent cellulose nanocrystal, phytic acid, multiple hydrogen bond, fluorescent hydrogel

CLC Number: 

  • TQ352

Fig.1

SEM images of composite hydrogels(×30 000)"

Fig.2

FT-IR spectra of composite hydrogels with different F-CNCs content and F-CNCs"

Fig.3

XRD spectra of composite hydrogels with different F-CNCs content(a) and F-CNCs(b)"

Fig.4

Swelling properties of composite hydrogels with different F-CNCs contents. (a) Swelling rate; (b) Re-swelling rate"

Fig.5

Compressive strength-strain and recovery curves of different F-CNCs content"

Fig.6

Rheological properties of PVA/F-CNCs/PA composite hydrogels with different F-CNCs contents. (a) Relationship between G'(G″) and strain; (b) Relationship between G'(G″) and scanning frequency; (c) Relationship between tanδ and scanning frequency; (d) Relationship between G'(G″) and temperature"

Fig.7

TG and DTG curves of composite hydrogel PVA/PA and PVA/F-CNCs/PA"

Fig.8

Fluorescence properties of PVA/F-CNCs/PA composite hydrogel. (a) Effect of Cl- concentration on fluorescent intensity; (b) Fitting curve between composite hydrogel and Cl- fluorescent quenching"

[1] GAHARWAR A K, PEPPAS N A, KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnology & Bioengineering, 2014, 111(3): 441-453.
[2] HOFFMAN A S. Hydrogels for biomedical applica-tions[J]. Advanced Drug Delivery Reviews, 2012, 64:18-23.
doi: 10.1016/j.addr.2012.09.010
[3] YAN J J, WANG H, ZHOU Q H, et al. Reversible and multisensitive quantum dot gels[J]. Macromolecules, 2011, 44(11): 4306-4312.
doi: 10.1021/ma200591w
[4] NISHIYABU R, USHIKUBO S, KAMIYA Y, et al. A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water[J]. Journal of Materials Chemistry A, 2014, 2:15846-15852.
[5] HASSAN C M, PEPPAS N A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Advances in Polymer Science, 2000, 153:37-65.
[6] OSSIPOV D, PISKOUNOVA S, HILBORN J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels[J]. Macromolecules, 2008, 41(11): 3971-3982.
doi: 10.1021/ma800332c
[7] QU J, HUAN G, CHEN Y, et al. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12752-12760.
[8] STAUFFER S R, PEPPAST N A. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing[J]. Polymer, 1992, 33(18): 3932-3936.
doi: 10.1016/0032-3861(92)90385-A
[9] HASSAN C M, PEPPAS N A. Cellular PVA hydrogels produced by freeze/thawing[J]. Journal of Applied Polymer Science, 2000, 76(14): 2075-2079.
doi: 10.1002/(ISSN)1097-4628
[10] YOKOYAMA F, ACHIFE E C, MOMODA J, et al. Morphology of optically anisotropic agarose hydrogel prepared by directional freezing[J]. Colloid and Polymer Science, 1990, 268(6): 552-558.
doi: 10.1007/BF01410297
[11] GUTIERREZ M C, JOBBAGY M, RAPUN N, et al. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials[J]. Advanced Materials, 2006, 18(9): 1137-1140.
doi: 10.1002/(ISSN)1521-4095
[12] 张松华, 熊明诚, 王梓, 等. 基于机械力化学作用制备荧光纳米纤维素[J]. 化工进展, 2020, 39(4): 1405-1413.
ZHANG Songhua, XIONG Mingcheng, WANG Zi, et al. Preparation of fluorescent cellulose nanocrystals based on mechanical force chemical effect[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1405-1413.
[13] DEMIREL G B, CAYKARA T, DEMIRAY M, et al. Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels[J]. Journal of Macromolecular Science Part A, 2008, 46(1): 58-64.
doi: 10.1080/10601320802515316
[14] TANG H, BUTCHOSA N, ZHOU Q. A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol)[J]. Advanced Materials, 2015, 27(12): 2070-2076.
doi: 10.1002/adma.v27.12
[15] FORTUNATI E, PUGLIA D, LUZI F, et al. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I[J]. Carbohydrate Polymers, 2013, 97(2): 825-836.
doi: 10.1016/j.carbpol.2013.03.075
[16] MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science & Engineering C, 2008, 28(4): 539-548.
[17] ABITBOL T, JOHNSTONE T, QUINN T M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter, 2011, 7(6): 2373-2379.
doi: 10.1039/c0sm01172j
[18] ZHANG S, ZHANG Y, LI B, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448.
[19] LIU D, SUN X, TIAN H, et al. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites[J]. Cellulose, 2013, 20(6): 2981-2989.
doi: 10.1007/s10570-013-0073-6
[20] CHEN K, ZHANG S, LI A, et al. Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials[J]. Acs Nano, 2018, 12(5): 4269-4279.
doi: 10.1021/acsnano.7b08671
[21] RAMBABU N, PANTHAPULAKKAL S, SAIN M, et al. Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films[J]. Industrial Crops and Products, 2016, 83:746-754.
doi: 10.1016/j.indcrop.2015.11.083
[22] DUFRESNE A. Nanocellulose: potential reinforcement in composites[M]. London: Royal Society of Chemistry, 2012: 1-32.
[23] ABIDI N, CABRALES L, HAIGLER C H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FT-IR spectroscopy[J]. Carbohydrate Polymers, 2014, 100:9-16.
doi: 10.1016/j.carbpol.2013.01.074
[24] DEEPA B, ABRAHAM E, CORDEIRO N, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
doi: 10.1007/s10570-015-0554-x
[25] CUNHA M A A D, CONVERTI A, SANTOS J C, et al. PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate[J]. Applied Biochemistry & Biotechnology, 2009, 157(3): 527-537.
[26] 孟立山, 詹秀环, 姚新建. 聚乙烯醇水凝胶的制备及其溶胀性能[J]. 化工技术与开发, 2010, 39(8): 13-14.
MENG Lishan, ZHAN Xiuhuan, YAO Xinjian. Study on surface texturization and properties of monocrystalline silicon-based solar cells[J]. Technology & Development of Chemical Industry, 2010, 39(8): 13-14.
[27] 顾雪梅, 安燕, 殷雅婷, 等. 水凝胶的制备及应用研究[J]. 广州化工, 2012, 40(10): 11-13.
GU Xuemei, AN Yan, YIN Yating, et al. Preparation and application of hydrogel[J]. Guangzhou Chemical Industry, 2012, 40(10): 11-13.
[28] SANNINO A, NETTI P A, MENSITIERI G, et al. Designing microporous macromolecular hydrogels for biomedical applications: a comparison between two techniques[J]. Composites Science & Technology, 2003, 63(16): 2411-2416.
[29] SPILLER K L, LAURENCIN S J, CHARLTON D, et al. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties[J]. Acta Biomaterialia, 2008, 4(1): 17-25.
doi: 10.1016/j.actbio.2007.09.001
[30] SHI X, HU Y, TU K, et al. Electromechanical polyaniline-cellulose hydrogels with high compressive strength[J]. Soft Matter, 2013, 9(42): 10129-10134.
doi: 10.1039/c3sm51490k
[31] TAKESHITA H, KANAYA T, NISHIDA K, et al. Gelation process and phase separation of PVA solutions as studied by a light scattering technique[J]. Macromolecules, 1999, 32(23): 7815-7819.
doi: 10.1021/ma990565j
[32] TAKAHASHI N, KANAYA T, NISHIDA K, et al. Effects of cononsolvency on gelation of poly(vinyl alcohol) in mixed solvents of dimethyl sulfoxide and water[J]. Polymer, 2003, 44(15): 4075-4078.
doi: 10.1016/S0032-3861(03)00390-2
[33] RICCIARDI R, AURIEMMA F, DE ROSA C, et al. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques[J]. Macromolecules, 2004, 37(5): 1921-1927.
doi: 10.1021/ma035663q
[34] LAM E, MALE K B, CHONG J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose[J]. Trends in Biotechnology, 2012, 30(5): 283-90.
doi: 10.1016/j.tibtech.2012.02.001
[35] KIM S, SEO J, PARK S Y. Torsion-induced fluorescence quenching in excited-state intramolecular proton transfer (ESIPT) dyes[J]. Journal of Photochemistry & Photobiology A Chemistry, 2007, 191(1): 19-24.
[36] SHIZUKA H. Excited-state proton-transfer reactions and proton-induced quenching of aromatic compounds[J]. Accchemres, 1985, 18(5): 141-147.
[1] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[2] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[3] YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100.
[4] XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabric [J]. Journal of Textile Research, 2020, 41(02): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Bin;LI Zhe. Influencing factors of drape raised quantity of bubble sleeve[J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 104 -106 .
[2] JIA Qing-Long, JIAO Xiao-Ning, WANG Zhong-Zhong. The fiber diameter prediction model and optimization of PVDF electrospun lithium separators[J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(3): 22 -26 .
[3] .  Preparation of electrospun MnO2/PAN nanofibers and catalytic oxidation on formaldehyde[J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 1 -6 .
[4] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics[J]. Journal of Textile Research, 2019, 40(02): 173 -180 .
[5] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[6] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[7] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[8] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[9] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[10] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds[J]. Journal of Textile Research, 2020, 41(03): 100 -105 .