Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (05): 213-219.doi: 10.13475/j.fzxb.20211101502
• Comprehensive Review • Previous Articles Next Articles
CLC Number:
[1] |
BERGER M M, CAVADINI C, BART A, et al. Cutaneous copper and zinc losses in burns[J]. Burns, 1992, 18(5): 373-380.
pmid: 1445626 |
[2] | AGREN M S. Studies on zinc in wound healing[J]. Acta Dermato-Venereologica Supplementum, 1990, 154: 1-36. |
[3] |
PICKART L. The human tri-peptide GHK and tissue remodeling[J]. J Biomater Sci Polym Ed, 2008, 19(8): 969-988.
doi: 10.1163/156856208784909435 |
[4] |
SCHWARTZ J R, MARSH R G, DRAELOS Z D. Zinc and skin health: overview of physiology and pharmacology[J]. Dermatol Surg, 2005, 31(7): 837-847.
doi: 10.1111/(ISSN)1524-4725 |
[5] | 秦益民. Cupron铜基抗菌纤维的性能和应用[J]. 纺织学报, 2009, 30(12):134-136. |
QIN Yimin. Properties and applications of Cupron copper containing antimicrobial fibers[J]. Journal of Textile Research, 2009, 30(12):134-136. | |
[6] | 秦益民, 陈洁. 海藻酸纤维吸附及释放锌离子的性能[J]. 纺织学报, 2011, 32(1):16-19. |
QIN Yimin, CHEN Jie. Absorption and release of zinc ion by alginate fibers[J]. Journal of Textile Research, 2011, 32(1):16-19. | |
[7] |
TENAUD I, SAINTE-MARIE I, JUMBOU O, et al. In vitro modulation of keratinocyte wound healing integrins by zinc, copper and manganese[J]. British Journal of Dermatology, 1999, 140: 26-34.
pmid: 10215764 |
[8] |
WILLIAMS K J, METZLER R, BROWN R A, et al. The effects of topically applied zinc on the healing of open wounds[J]. Journal of Surgical Research, 1979, 27: 62-67.
doi: 10.1016/0022-4804(79)90111-2 |
[9] |
LANSDOWN A B, MIRASTSCHIJSKI U, STUBBS N, et al. Zinc in wound healing: theoretical, experimental, and clinical aspects[J]. Wound Repair Regen, 2007, 15(1): 2-16.
doi: 10.1111/j.1524-475X.2006.00179.x pmid: 17244314 |
[10] | 李利根, 郭振荣, 赵霖, 等. 口饲和创面补锌对烫伤大鼠血清组织中锌的影响[J]. 西南国防医药, 2006, 16(2):147-149. |
LI Ligen, GUO Zhenrong, ZHAO Lin, et al. Effects of oral feeding and wound zinc supplementation on serum zinc in scald rats[J]. Medical Journal of National Defending Forces in Southwest China, 2006, 16(2):147-149. | |
[11] | AGREN M S, STROMBERG H E. Topical treatment of pressure ulcers: a randomized comparative trial of varidase and zinc oxide[J]. Scand J Plast Reconstr Surg, 1985, 19: 97-100. |
[12] |
DAVIES J W, FELL G S. Tissue catabolism in patients with burns[J]. Clin Clim Acta, 1974, 51(1): 83-92.
doi: 10.1016/0009-8981(74)90064-3 |
[13] | 陈国贤, 韩春茂, 王彬. 严重烧伤病人微量元素的动态变化[J]. 肠外与肠内营养, 1998, 5(3):146-148. |
CHEN Guoxian, HAN Chunmao, WANG Bin. Dynamic changes in the trace elements of heavily burnt pati-ents[J]. Parenteral & Enteral Nutrition, 1998, 5(3):146-148. | |
[14] | 郭振荣, 李利根, 赵霖, 等. 烧伤后锌代谢特点及其对铜、铁、钙的影响[J]. 中华烧伤杂志, 2000, 16(5): 286-288. |
GUO Zhenrong, LI Ligen, ZHAO Lin, et al. Zinc metabolism after burn and its effect on copper, iron and calcium[J]. Chinese Journal of Burns, 2000, 16(5): 286-288. | |
[15] |
KOUREMENOU-DONA E, DONA A, PAPOUTSIS J. Copper and zinc concentrations in serum of healthy Greek adults[J]. The Science of the Total Environment, 2006, 359(1-3):76-81.
doi: 10.1016/j.scitotenv.2005.04.009 |
[16] | DOLLWET H H A, SORENSON J R J. Historic uses of copper compounds in medicine[J]. Trace Elements in Medicine, 1985, 2: 80-87. |
[17] |
SHIPPEE R L, MASON A D, BURLESON D G. The effect of burn injury and zinc nutrition on fecal endogenous zinc, tissue zinc distribution, and T-lymphocyte subset distribution using a murine model[J]. Proc Soc Exp Biol Med, 1988, 189(1): 31-38.
doi: 10.3181/00379727-189-42776 |
[18] | PARBOTEEAH S, BROWN A. Managing chronic venous leg ulcers with zinc oxide paste bandages[J]. British Journal of Nursing, 2008, 17(6): 30-36. |
[19] |
QIN Y, ZHU C, CHEN J, et al. Absorption and release of zinc and copper ions by chitosan fibers[J]. Journal of Applied Polymer Science, 2007, 105(2): 527-532.
doi: 10.1002/(ISSN)1097-4628 |
[20] | 秦益民, 陈洁. 海丝纤维吸附铜和锌离子的性能[J]. 纺织学报, 2011, 32(9): 20-23. |
QIN Yimin, CHEN Jie. Absorption of copper and zinc ions by seacell fibers[J]. Journal of Textile Research, 2011, 32(9): 20-23. | |
[21] |
KEIL C, HUBNER C, RICHTER C, et al. Ca-Zn-Ag alginate aerogels for wound healing applications: swelling behavior in simulated human body fluids and effect on macrophages[J]. Polymers (Basel), 2020, 12(11): 2741-2745.
doi: 10.3390/polym12112741 |
[22] |
KHORASANI M T, JOORABLOO A, ADELI H, et al. Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo evaluation[J]. Int J Biol Macromol, 2021, 166: 200-212.
doi: 10.1016/j.ijbiomac.2020.10.142 pmid: 33190822 |
[23] |
KOGA A Y, FELIX J C, SILVESTRE R G M, et al. Evaluation of wound healing effect of alginate film containing Aloe vera gel and cross-linked with zinc chloride[J]. Acta Cir Bras, 2020. DOI:10.1590/s0102-865020200050000007.
doi: 10.1590/s0102-865020200050000007 |
[24] |
NOSRATI H, KHODAEI M, BANITALEBI-DEHKORDI M, et al. Preparation and characterization of poly(ethylene oxide)/zinc oxide nanofibrous scaffold for chronic wound healing applications[J]. Polim Med, 2020, 50(1): 41-51.
doi: 10.17219/pim/128378 pmid: 33150750 |
[25] |
MAJUMDER S, DAHIYA U R, YADAV S, et al. Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing[J]. Biomolecules, 2020, 10(5):710-714.
doi: 10.3390/biom10050710 |
[26] |
TAVAKOLI S, MOKHTARI H, KHARAZIHA M, et al. A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2020.110837.
doi: 10.1016/j.msec.2020.110837 |
[27] |
DODERO A, SCARFI S, POZZOLINI M, et al. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: biological, mechanical, and physicochemical characterization[J]. ACS Appl Mater Interfaces, 2020, 12(3):3371-3381.
doi: 10.1021/acsami.9b17597 |
[28] |
ZHANG M, CHEN S, ZHONG L, et al. Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing[J]. Int J Biol Macromol, 2020, 143:235-242.
doi: 10.1016/j.ijbiomac.2019.12.046 |
[29] | BROOKS N A. Treatment of melanoma excision wound with 50% zinc chloride solution astringent-mohs melanoma surgery without the paste[J]. J Clin Aesthet Dermatol, 2020, 13(3):15-16. |
[30] |
BORKOW G, GABBAY J, ZATCOFF R C. Could chronic wounds not heal due to too low local copper levels[J]. Med Hypotheses, 2008, 70(3): 610-613.
doi: 10.1016/j.mehy.2007.06.006 |
[31] | QIN Y, ZHU C, CHEN J, et al. Chitosan fibers with enhanced antimicrobial properties[J]. Chemical Fibers International, 2009(3): 154-156. |
[32] |
GABBAY J, MISHAL J, MAGEN E, et al. Copper oxide impregnated textiles with potent biocidal activ-ities[J]. Journal of Industrial Textiles, 2006, 35: 323-335.
doi: 10.1177/1528083706060785 |
[33] |
BORKOW G, GABBAY J. Putting copper into action: copper impregnated products with potent biocidal activities[J]. Faseb Journal, 2004, 18: 1728-1730.
doi: 10.1096/fsb2.v18.14 |
[34] |
BORKOW G, LARA H H, COVINGTON C Y, et al. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters[J]. Antimicrob Agents Chemother, 2008, 52(2): 518-525.
doi: 10.1128/AAC.00899-07 pmid: 18070974 |
[35] | 莫岚, 陈洁, 宋静, 等. 海藻酸纤维对铜离子的吸附性能[J]. 合成纤维, 2009, 38(2):34-36. |
MO Lan, CHEN Jie, SONG Jing, et al. Absorption of copper ions by alginate fibers[J]. Synthetic Fibers, 2009, 38(2):34-36. | |
[36] |
AL-SAEEDI S, AL-KADHI N S, AL-SENANI G M, et al. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds[J]. Int J Biol Macromol, 2021, 182:464-471.
doi: 10.1016/j.ijbiomac.2021.04.013 |
[37] | MELAMED E, KIAMBI P, OKOTH D, et al. Healing of chronic wounds by copper oxide-impregnated wound dressings-case series[J]. Medicina (Kaunas), 2021, 57(3): 296-300. |
[38] |
HAIDER M K, ULLAH A, SARWAR M N, et al. Lignin-mediated in-situ synthesis of CuO nanoparticles on cellulose nanofibers: a potential wound dressing material[J]. Int J Biol Macromol, 2021, 173:315-326.
doi: 10.1016/j.ijbiomac.2021.01.050 pmid: 33450343 |
[39] |
SHAHRIARI-KHALAJI M, HONG S, HU G, et al. Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing[J]. Polymers (Basel), 2020, 12(11): 2683-2688.
doi: 10.3390/polym12112683 |
[40] |
BALCUCHO J, NARVAEZ D M, CASTRO-MAYORGA J L. Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus[J]. Nanomaterials (Basel), 2020, 10(9):1692-1697.
doi: 10.3390/nano10091692 |
[41] |
ARENDSEN L P, THAKAR R, BASSETT P, et al. The impact of copper impregnated wound dressings on surgical site infection following caesarean section: a double blind randomised controlled study[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 251: 83-88.
doi: S0301-2115(20)30267-0 pmid: 32502772 |
[42] | JAGANATHAN S K, MANI M P. Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application[J]. Biotech, 2018, 8(8): 327-333. |
[43] |
AGREN M S, MIRASTSCHIJSKI U. The release of zinc ions from and cytocompatibility of two zinc oxide dressings[J]. Journal of Wound Care, 2004, 13: 367-369.
pmid: 15517745 |
[44] | 郭振荣, 李利根, 赵霖, 等. 锌营养状态对烧伤创面修复的实验研究[J]. 中国临床营养杂志, 2001, 9(12): 242-244. |
GUO Zhenrong, LI Ligen, ZHAO Lin, et al. Experimental study on the effect of zinc nutritive status on repair of burn wound[J]. Chinese Journal of Clinical Nutrition, 2001, 9(12): 242-244. | |
[45] |
SEGAL H C, HUNT B J, GILDING K. The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation[J]. Journal of Biomaterials Applications, 1998, 12(3): 249-257.
pmid: 9493071 |
[46] |
HU G F. Copper stimulates proliferation of human endothelial cells under culture[J]. J Cell Biochem, 1998, 69:326-335.
doi: 10.1002/(sici)1097-4644(19980601)69:3<326::aid-jcb10>3.0.co;2-a pmid: 9581871 |
[47] |
PICKART L, FREEDMAN J H, LOKER W J, et al. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells[J]. Nature, 1980, 288: 715-717.
doi: 10.1038/288715a0 |
[1] | ZHANG Jing, HUANG Zhiheng, NIU Guangliang, LIANG Sheng, YANG Lüyun, WEI Lei, ZHOU Shifeng, HOU Chong, TAO Guangming. Review on thermal-drawn multimaterial fiber optoelectronics [J]. Journal of Textile Research, 2023, 44(01): 11-20. |
[2] | CHEN Chen, HAN Yi, SUN Haiyan, YAO Chengkai, GAO Chao. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof [J]. Journal of Textile Research, 2023, 44(01): 47-55. |
[3] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
[4] | ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47. |
[5] | OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56. |
[6] | YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85. |
[7] | LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18. |
[8] | XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24. |
[9] | GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10. |
[10] | XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43. |
[11] | QIN Yimin. Clinical applications of silver containing alginate wound dressings [J]. Journal of Textile Research, 2020, 41(09): 183-190. |
[12] | WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31. |
[13] | WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23. |
[14] | QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers [J]. Journal of Textile Research, 2019, 40(05): 170-176. |
[15] | WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31. |
|