Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 24-30.doi: 10.13475/j.fzxb.20211102108

• Invited Column: Biomedical Textiles • Previous Articles     Next Articles

Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability

ZHANG Yu1,2, LIU Laijun1,2, LI Chaojing1,2, JIN Qiaoqiao3,4, XIE Qianyang3,5, LI Peilun3,6, WANG Fujun1,2(), WANG Lu1,2   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. College of Stomatology, Shanghai Jiaotong University, Shanghai 200011, China
    4. Department of Endodontics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    5. Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    6. Department of Orthodontics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
  • Received:2021-11-03 Revised:2022-01-03 Online:2022-03-15 Published:2022-03-29
  • Contact: WANG Fujun E-mail:wfj@dhu.edu.cn

Abstract:

In order to improve the osteoconduction of synthetic resorbable membranes for guided bone regeneration, polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) shish-kebab nanofibrous membranes were prepared by electrospinning and solvent-induced crystallization. Exosomes were then immobilized on membranes via adhesion of polydopamine. The morphology, chemical composition, physicochemical and cellular osteogenic differentiation properties of the composite fibrous membranes were characterized. The shish-kebab structure was successfully induced on PCL/β-TCP nanofibers. The results show that membranes doubly modified by shish-kebab and polydopamine had the best surface wettability and excellent protein adsorption ability. Exosome-functionalized shish-kebab fibrous membrane increases the alkaline phosphatase activity of bone marrow mesenchymal stem cells due to the synergistic effect of shish-kebab structure, polydopamine, and exosome, which has good therapeutic potential for promoting bone healing in vivo.

Key words: nanofibrous membrane, guided bone regeneration, electrospinning, shish-kebab fibrous membrane, exosome, dopamine, polycaprolactone, bone reconstruction material

CLC Number: 

  • TS101.4

Fig.1

SEM images of PT5 and PT5SK fibrous membranes before and after PDA modification"

Fig.2

FT-IR spectra of β-TCP, PCL, PT5, PT5/PDA, PT5SK and PT5SK/PDA"

Fig.3

Water contact angles of PT5 and PT5SK fibrous membranes before and after PDA modification"

Fig.4

Protein adsorption of PT5, PT5SK, PT5/PDA and PT5SK/PDA fibrous membranes"

Fig.5

FE-TEM image (a) and particle size distribution (b) of BMSC-Exo"

Fig.6

ALP staining of rBMSCs osteogenic on fibrous membranes at 7 d and 14 d"

Fig.7

ALP activity of rBMSCs osteogenic on fibrous membranes at 7 d and 14 d"

[1] GERMEN Meliha, BASER Ulku, LACIN Cagdas Caglar, et al. Periodontitis prevalence, severity, and risk factors: a comparison of the AAP/CDC case definition and the EFP/AAP classification[J]. International Journal of Environmental Research and Public Health, 2021,18(7):3459.
doi: 10.3390/ijerph18073459
[2] 李成, 施乐. 2种修复膜材料用于牙种植引导骨再生的临床效果比较[J]. 中国口腔颌面外科杂志, 2020,18(5):438-41.
LI Cheng, SHI Le. Clinical analysis of different oral biofilm materials for guided bone regeneration in dental[J]. China Journal of Oral and Maxillofacial Surgery, 2020,18(5):438-41.
[3] YANG Chuqun, SHAO Qi, HAN Yulai, et al. Fibers by electrospinning and their emerging applications in bone tissue engineering[J]. Applied Sciences, 2021,11(19):9082.
doi: 10.3390/app11199082
[4] VAQUETTE Cedryck, SAIFZADEH Siamak, FARAG Amro, et al. Periodontal tissue engineering with a multiphasic construct and cell sheets[J]. Journal of Dental Research, 2019,98(6):673-681.
doi: 10.1177/0022034519837967
[5] CHEN Honglin, HUANG Xiaobin, ZHANG Minmin, et al. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering[J]. Acta Biomaterialia, 2017,59:82-93.
doi: S1742-7061(17)30432-4 pmid: 28690010
[6] HUANG Chunpeng, YANG Gang, ZHOU Shaobing, et al. Controlled delivery of growth factor by hierarchical nanostructured core-shell nanofibers for the efficient repair of critical-sized rat calvarial defect[J]. ACS Biomaterials Science & Engineering, 2020,6(10):5758-5770.
[7] LIU Laijun, SHANG Yuna, LI Chaojing, et al. Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration[J]. Advanced Healthcare Materials, 2021,10(21):e2101195.
doi: 10.1002/adhm.202101195 pmid: 34350724
[8] DANESHMANDI Leila, SHAH Shiv, JAFARI Tahereh, et al. Emergence of the stem cell secretome in regenerative engineering[J]. Trends Biotechnol, 2020,38(12):1373-1384.
doi: 10.1016/j.tibtech.2020.04.013
[9] LIU Li, GUO Shujuan, SHI Weiwei, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Engineering Part A, 2021,27(13/14):962-976.
doi: 10.1089/ten.tea.2020.0141
[10] KALLURI Raghu, LEBLEU Valerie S. The biology, function, and biomedical applications of exosomes [J]. Science, 2020,367(6478):eaau6977.
doi: 10.1126/science.aau6977
[11] WEI Yan, SHI Miusi, ZHANG Jinglun, et al. Autologous versatile vesicles-incorporated biomimetic extracellular matrix induces biomineralization[J]. Advanced Functional Materials, 2020,30(21):2000015.
doi: 10.1002/adfm.v30.21
[12] WANG Jie, DONG Yue, LI Yiwei, et al. Designer exosomes for active targeted chemo-photothermal synergistic tumor therapy[J]. Advanced Functional Materials, 2018,28(18):1707360.
doi: 10.1002/adfm.v28.18
[13] HUANG Jianghong, XIONG Jianyi, YANG Lei, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021,13(19):8740-8750.
doi: 10.1039/d1nr01314a pmid: 33969373
[14] 魏继珍. 人脱落乳牙牙髓干细胞来源外泌体调节骨髓间充质干细胞生物学特性及其在骨缺损修复中的研究[D]. 太原:山西医科大学, 2020: 34-42.
WEI Jizhen. Exosomes derived from human exfoliated deciduous teeth stem cells regulate biological characteristics of bone marrow mesenchymal stem cells and its applications in bone regeneration[D]. Taiyuan: Shanxi Medical University, 2020: 34-42.
[15] WANG Xiaoqin, SHAH Furqan A, VAZIRISANI Forugh, et al. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces[J]. Biomaterials, 2020,230:119571.
doi: S0142-9612(19)30670-2 pmid: 31753474
[16] ZHA Yao, LI Yawu, LIN Tianyi, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021,11(1):397-409.
doi: 10.7150/thno.50741 pmid: 33391482
[17] AMOKRANE Gana, HUMBLOT Vincent, JUBELI Emile, et al. Electrospun poly(epsilon-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: surface characterization and influence on in vitro biological response[J]. Acs Omega, 2019,4(17):17194-17208.
doi: 10.1021/acsomega.9b01647
[18] SIQUEIRA Lilian de, PASSADOR Fábio Roberto, LOBO Anderson Oliveira, et al. Morphological, thermal and bioactivity evaluation of electrospun PCL/beta-TCP fibers for tissue regeneration[J]. Polimeros-Ciencia E Tecnologia, 2019,29(1):e2019005.
[19] HENRIQUE Backes Eduardo, GONÇALVES Beatrice Cesar Augusto, BORIOLO Shimomura Kawany Munique, et al. Development of poly(epsilon-polycaprolactone)/hydroxyapatite composites for bone tissue regeneration[J]. Journal of Materials Research, 2021. DOI: 10.1557/S43578-021-00316-0.
doi: 10.1557/S43578-021-00316-0
[20] PARK So Hee, PARK Su A, KANG Yun Gyeong, et al. PCL/beta-TCP composite scaffolds exhibit positive osteogenic differentiation with mechanical stimulation[J]. Tissue Engineering and Regenerative Medicine, 2017,14(4):349-358.
doi: 10.1007/s13770-017-0022-9
[21] HSIEH Yi Ho, HSIEH Ming Fa, FANG Chih Hsiang, et al. Osteochondral regeneration induced by TGF-beta loaded photo cross-linked hyaluronic acid hydrogel infiltrated in fused deposition-manufactured composite scaffold of hydroxyapatite and poly(ethylene glycol)-block-poly(epsilon-caprolactone)[J]. Polymers, 2017,9(5):182.
doi: 10.3390/polym9050182
[22] GOMEZ-LIZARRAGA Karla K, FLORES-MORALES Carlos, PRADO-AUDELO María L Del, et al. Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study[J]. Materials Science & Engineering C-Materials for Biological Applications, 2017,79:326-335.
[23] MOREIRA Ana Paula Duarte, SADER Márcia Soares, SOARES Gloria Dulce de Almeida, et al. Strontium incorporation on microspheres of alginate/beta-tricalcium phosphate as delivery matrices[J]. Materials Research-Ibero-American Journal of Materials, 2014,17(4):67-73.
[24] XING Jun, WANG Qiyou, HE Tianrui, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for antimicrobial[J]. ACS Applied Bio Materials, 2018,1(5):1236-1243.
doi: 10.1021/acsabm.8b00106
[25] 刘勇. 聚多巴胺/成骨生长肽功能化的纳米纤维支架的构建及其成骨性能研究[D]. 苏州:苏州大学, 2020: 24-28.
LIU Yong. Polydopamine-modified poly(L-lactic acid) nanofiber scaffolds immobilized with an osteogenic growth peptide for bone tissue regeneration[D]. Suzhou: Soochow University, 2020: 24-28.
[26] WANG Peng, YIN Huamo, LI Xiang, et al. Simultaneously constructing nanotopographical and chemical cues in 3D-printed polylactic acid scaffolds to promote bone regeneration[J]. Materials Science & Engineering C-Materials for Biological Applications, 2021,118:111457.
[27] LIU Laijun, ZHANG Tianian, LI Chaojing, et al. Regulating surface roughness of electrospun poly(epsilon-caprolactone)/beta-tricalcium phosphate fibers for enhancing bone tissue regeneration[J]. European Polymer Journal, 2021,143:110201.
doi: 10.1016/j.eurpolymj.2020.110201
[28] SCHULTE Carsten, PODESTA Alessandro, LENARDI Cristina, et al. Quantitative control of protein and cell interaction with nanostructured surfaces by cluster assembling[J]. Accounts of Chemical Research, 2017,50(2):231-239.
doi: 10.1021/acs.accounts.6b00433 pmid: 28116907
[29] LIU Hua, LI Wenling, LUO Binghong, et al. Icariin immobilized electrospinning poly(L-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity[J]. Materials Science and Engineering: C, 2017,79:399-409.
doi: 10.1016/j.msec.2017.05.077
[30] LIU Shuyu, XU Xia, LIANG Shujing, et al. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy[J]. Frontiers in Cell and Developmental Biology, 2020,8:619.
doi: 10.3389/fcell.2020.00619 pmid: 32793590
[31] LI Wenyue, LIU Yunsong, ZHANG Ping, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Applied Materials & Interfaces, 2018,10(6):5240-5254.
[1] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[2] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[3] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[4] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
[5] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[6] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[7] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[8] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[9] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[10] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[11] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[12] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[13] ZHU Xiaowei, WEI Tianchen, XING Tieling, CHEN Guoqiang. Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures [J]. Journal of Textile Research, 2021, 42(09): 90-96.
[14] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[15] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!