Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 127-132.doi: 10.13475/j.fzxb.20211104006

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide

QIAO Xiran1, FANG Kuanjun1,2,3,4(), LIU Xiuming1, GONG Jixian1, ZHANG Shuai1, ZHANG Min1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    3. Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao, Shandong 266071, China
    4. State Key Laboratory for Bio-Fibers and Eco-Textiles, Qingdao, Shandong 266071, China
  • Received:2021-11-08 Revised:2022-04-30 Online:2022-11-15 Published:2022-12-26
  • Contact: FANG Kuanjun E-mail:13808980221@163.com

Abstract:

The large difference in surface properties of cotton and polyamide fibers makes the spreading and permeation behaviors of dye inks different on the two fibers, which brings great difficulties for the inkjet printing of cotton/polyamide interwoven fabrics to obtain clear patterns. Herein, the surface properties of the cotton and polyamide fibers were modified by using multiple polymers for the cotton/polyamide interwoven fabrics. The results showed that the effect for the two fibers were different when the cotton/polyamide interwoven fabric was modified by only hydroxyethyl methyl cellulose. The hydrophilicity of the cotton fiber surface was decreased while the hydrophilicity of the polyamide fiber surface was enhanced. The dye depth values of cyan, magenta, yellow, and black on the interwoven fabric modified with hydroxyethyl methyl cellulose were increased by 34.6%, 45.0%, 40.0%, and 31.5%, respectively, compared with fabric modified with sodium alginate. Meanwhile the ink-jet printing pattern definition of the modified cotton-polyamide interwoven fabric was improved as a result.

Key words: cotton/polyamide fabric, surface modification, hydroxyethyl methyl cellulose, reactive dye, inkjet printing

CLC Number: 

  • TS194.4

Fig.1

Optical microscope photo of inkjet printing lines on polyamide fabric (a) and cotton/polyamide fabric (b) modified by different water-soluble polymers"

Tab.1

Contact angle and line width of cotton/polyamide interwoven fabrics modified by different polymers"

水溶性聚合物处理前后试样 接触角/(°) 线宽/mm
原布 29.3 0.23
空白对照样 23.2 0.25
海藻酸钠 27.1 0.24
黄原胶 50.3 0.22
瓜尔胶 39.1 0.24
羧甲基羟丙基纤维素 21.8 0.21
羧甲基纤维素钠 23.1 0.18
羟乙基甲基纤维素LH40MR 116.9 0.18
羟乙基甲基纤维素LH20MR 117.2 0.15
羟丙基淀粉醚 18.9 0.22
阴离子聚丙烯酰胺 21.2 0.21
非离子聚丙烯酰胺 21.4 0.21

Fig.2

Spreading process and contact angle of water droplets on fabric surface. (a) Untreated cotton fabric; (b) Cotton fabric modified by hydroxyethyl methylcellulose; (c) Untreated polyamide fabric; (d) Polyamide fabric modified by hydroxyethyl methyl cellulose; (e) Untreated cotton/polyamide interwoven fabric; (f) Cotton/polyamide interwoven fabric modified by hydroxyethyl methyl cellulose"

Tab.2

Inkjet printing K/S values of color block on cotton/ polyamide interwoven fabrics modified by different polymers"

水溶性聚合物处理前后试样 品红
原布 1.80 0.97 0.88 4.91
空白对照样 10.55 7.04 5.49 14.89
海藻酸钠 9.04 7.44 4.72 13.12
黄原胶 10.43 8.36 6.40 12.89
瓜尔胶 8.03 5.84 4.61 12.56
羧甲基羟丙基纤维素 11.19 10.80 6.63 14.04
羧甲基纤维素钠 11.09 9.55 6.45 13.32
羟乙基甲基纤维素LH40MR 12.17 10.79 6.61 17.25
羟乙基甲基纤维素LH20MR 13.09 12.53 6.48 17.84
羟丙基淀粉醚 10.08 7.04 5.29 14.83
阴离子聚丙烯酰胺 8.79 8.02 5.31 12.58
非离子聚丙烯酰胺 8.06 7.33 4.67 12.91

Fig.3

Photographs of inkjet printing patterns on cotton/polyamide interwoven fabrics modified by different water-soluble polymers. (a) Untreated; (b) Sodium alginate; (c) Hydroxyethyl methyl cellulose"

Tab.3

Colour fastness to rubbing of cotton/polyamide interwoven fabrics with different pretreatments 级"

预处理方式 经向 纬向
湿 湿
未处理 5 4 5 4
海藻酸钠处理 5 3~4 5 3~4
羟乙基甲基纤维素处理 5 3~4 5 3~4
[1] GAO C, XING T, HOU X, et al. Clean production of polyester fabric inkjet printing process without fabric pretreatment and soaping[J]. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.124315.
doi: 10.1016/j.jclepro.2020.124315
[2] 叶嘉浩, 王莉莉, 吴明华, 等. 蚕丝织物同花同色双面数码喷墨印花上浆工艺[J]. 纺织学报, 2019, 40(10): 92-97.
YE Jiahao, WANG Lili, WU Minghua, et al. Sizing process of silk fabric by double-sided digital ink-jet printing with same colors and designs[J]. Journal of Textile Research, 2019, 40(10): 92-97.
[3] 安亚洁, 李敏, 杜长森, 等. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(4):87-92.
AN Yajie, LI Min, DU Changsen, et al. Diffusion behavior of micro droplet on silk woven fabrics[J]. Journal of Textile Research, 39(4): 87-92.
[4] PENG H, XIE R, FANG K, et al. Effect of diethylene glycol on the inkjet printability of reactive dye solution for cotton fabrics[J]. Langmuir, 2021, 37(4): 1493-1500.
doi: 10.1021/acs.langmuir.0c03016 pmid: 33464090
[5] ZHANG C, ZHANG X. Nano-modification of plasma treated inkjet printing fabrics[J]. International Journal of Clothing Science and Technology, 2015, 27(1):159-169.
doi: 10.1108/IJCST-07-2013-0078
[6] SHEN Q, CHEN S, WANG C, et al. A foam single-face pretreatment to modify silk fabric using EBODAC to improve inkjet printing performance[J]. Journal of The Textile Institute, 2014, 105(8):799-805.
doi: 10.1080/00405000.2013.852735
[7] FAISAL S, ALI M, SIDDIQUE S H, et al. Inkjet printing of silk: factors influencing ink penetration and ink spreading[J]. Pigment & Resin Technology, 2021, 50(4):285-292.
[8] YU J, SEIPEL S, NIERSTRASZ V A. Digital inkjet functionalization of water-repellent textile for smart textile application[J]. Journal of Materials Science, 2018, 53(18):13216-13229.
doi: 10.1007/s10853-018-2521-z
[9] CAO H, AI L, YANG Z, et al. Application of Xanthan gum as a pre-treatment and sharpness evaluation for inkjet printing on polyester[J]. Polymers, 2019.DOI:10.3390/polym11091504.
doi: 10.3390/polym11091504
[10] LI C, FANG L, FANG K, et al. Synergistic effects of alpha olefin sulfonate and sodium alginate on inkjet printing of cotton/polyamide fabrics[J]. Langmuir, 2021, 37(2):683-692.
doi: 10.1021/acs.langmuir.0c02723 pmid: 33405938
[11] 马养鹏. 锦棉织物的同浆印花[J]. 印染, 2017, 43(10): 26-30.
MA Yangpeng. Printing of nylon/cotton fabric in one paste[J]. China Dyeing & Finishing, 2017, 43(10): 26-30.
[12] HAN Lei, REN Yanfei, FANG Kuanjun, et al. Short clean dyeing of two-component cotton/polyamide fabrics through adaptive adjustment of the dye solution[J]. Journal of Cleaner Production, 2022.DOI:10.1016/j.jclepro.2021.130077.
doi: 10.1016/j.jclepro.2021.130077
[13] QIAO X, FANG K, LIU X, et al. Different influences of hydroxypropyl methyl cellulose pretreatment on surface properties of cotton and polyamide in inkjet printing[J]. Progress in Organic Coatings, 2022.DOI:10.1016/j.porgcoat.2022.106746.
doi: 10.1016/j.porgcoat.2022.106746
[1] ZHANG Shuai, FANG Kuanjun, LIU Xiuming, QIAO Xiran. Effect of reactive dye structure on performance of colored polymer nanospheres [J]. Journal of Textile Research, 2022, 43(12): 96-101.
[2] SHAO Min, WANG Lijun, LI Meiqi, LIU Jinqiang, SHAO Jianzhong. Hydrolysis and bonding properties of reactive dyes in non-aqueous medium with minimal water systems [J]. Journal of Textile Research, 2022, 43(11): 94-103.
[3] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[4] XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan. Review on toughening modification of carbon fiber/epoxy resin composites [J]. Journal of Textile Research, 2022, 43(09): 203-210.
[5] YANG Wenbo, ZHANG Aojie, LIU Youyan, LI Qingyun. Adsorption and decolorization of Reactive Blue 4 by polyurethane foam-immobilized biosystem [J]. Journal of Textile Research, 2022, 43(08): 132-139.
[6] WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142.
[7] LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25.
[8] WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96.
[9] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[10] PEI Liujun, SHI Wenhua, ZHANG Hongjuan, LIU Jinqiang, WANG Jiping. Technology progress and application prospect of non-aqueous medium dyeing systems [J]. Journal of Textile Research, 2022, 43(01): 122-130.
[11] XIAN Yongfang, WANG Hongmei, WU Minghua, WANG Lili. Application of low/non-ammonia additives in reactive deep printing [J]. Journal of Textile Research, 2021, 42(11): 89-96.
[12] LI Chang, FANG Kuanjun, LIU Xiuming, AN Fangfang, LIANG Yingchao, LIU Hao. Effect of cationic modification in hydrophobic system on ink droplet spreading on cotton/polyamide fabrics [J]. Journal of Textile Research, 2021, 42(09): 112-119.
[13] CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136.
[14] CHEN Xiaowen, WU Wei, ZHONG Yi, XU Hong, MAO Zhiping. Low-moisture content baking and steaming color fixation process for cotton fabrics padded with reactive dyes [J]. Journal of Textile Research, 2021, 42(07): 115-122.
[15] WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .