Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 17-23.doi: 10.13475/j.fzxb.20211104607

• Invited Column: Biomedical Textiles • Previous Articles     Next Articles

Numerical simulation of hemodynamics in spiral artificial blood vessel

LI Tianhua1, LI Jingjing2, ZHANG Keqin1,3, ZHAO Huijing1,3, MENG Kai1,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Institute of Cardiovascular Diseases, Soochow University, Suzhou, Jiangsu 215021, China
    3. National Engineering Laboratory for Modern Silk (Suzhou), Suzhou, Jiangsu 215123, China
  • Received:2021-11-07 Revised:2021-12-30 Online:2022-03-15 Published:2022-03-29
  • Contact: MENG Kai E-mail:mk2009@suda.edu.cn

Abstract:

Low wall shear stress (WSS) is one of the mechanical causes for restenosis after vascular transplantation. In order to investigate the effect of swirling flow on hemodynamics such as WSS, an end-to-side anastomotic model between the spiral artificial blood vessel and the host vessel was constructed. The formation of swirling flow was confirmed by finite element numerical simulation, and the effects of anastomotic angle, spiral radius and pitch on WSS in the toe of the model (an area prone to intimal hyperplasia) were discussed. The results show that the lowest value of the time average wall shear stress (TAWSS) in a cardiac cycle is 1.2 Pa when the anastomotic angle is 30°, which are higher than the values of 0.3 Pa (45°) and 0.4 Pa (60°) respectively. When the spiral radius is 1.0, 1.5 and 2.0 mm, the corresponding minimum TAWSS is 0.69, 0.68 and 1.06 Pa respectively, which shows larger spiral radius is more favorable to improve the WSS. When the pitch gradually decreases from 96 mm to 48 and 32 mm, the minimum TAWSS gradually increases from 0.77 Pa to 1.06 and 1.30 Pa. It shows that when the pitch is small, the minimum TAWSS is high.

Key words: medical textiles, artificial blood vessel, spiral blood vessel, swirling flow, wall shear stress, vascular transplantation

CLC Number: 

  • TS101.2

Fig.1

Schematic diagram of spiral artificial blood vessel"

Fig.2

Schematic diagram of end to side anastomotic model"

Tab.1

Geometric parameter values of model"

血管
直径
D/mm
直管
长度
H/mm
宿主血管
长度Ls/
mm
螺旋型血
管长度
Lx/mm
螺旋半径
Rx/mm
螺距
L/mm
吻合角/
(°)
4 8 80 64 1.0、1.5、2.0 96、48、32 30、45、60

Fig.3

Pulsating velocity curve"

Fig.4

Streamline diagram of velocity field (t=164 ms)"

Fig.5

Tangential velocity field on cross section of vascular model (t=164 ms)"

Fig.6

Velocity distribution on zx-plane (t=164 ms)"

Fig.7

WSS distribution of two vascular models (t=164 ms)"

Fig.8

Curve of TAWSS on toe line"

Fig.9

WSS distribution of spiral vascular model at different anastomotic angles (t=164 ms)"

Fig.10

TAWSS curves on toe line at different anastomotic angles"

Fig.11

WSS distribution of vascular model with different spiral radius (t=164 ms)"

Fig.12

TAWSS curves on toe line at different spiral radius"

Fig.13

WSS distribution of vascular model with different pitch (t=164 ms)"

Fig.14

TAWSS curves on toe line at different spiral pitch"

[1] WOUK J, DEKKER RFH, QUEIROZ EAIF, et al. β-glucans as a panacea for a healthy heart? their roles in preventing and treating cardiovascular diseases[J]. International Journal Biological Macromolecules, 2021,177:176-203.
doi: 10.1016/j.ijbiomac.2021.02.087
[2] 夏克尔·赛塔尔, 李超婧, 邹婷, 等. 人工血管的发展现状及趋势展望[J]. 产业用纺织品, 2019,37(3):1-5.
XIAKEER Saitaer, LI Chaojing, ZOU Ting, et al. Development status and trend of the artificial blood vessel[J]. Technical Textiles, 2019,37(3):1-5.
[3] 张家庆, 王武军, 闫玉生. 小口径人工血管材料应用进展[J]. 实用医学杂志, 2014,30(21):3520-3521.
ZHANG Jiaqing, WANG Wujun, YAN Yusheng. Application progress of small caliber artificial blood vessel materials[J]. Journal of Practical Medicine, 2014,30(21):3520-3521.
[4] CARO C G, CHESHIRE N J, WATKINS N. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs[J]. Journal of The Royal Society Interface, 2005,2(3):261-266.
doi: 10.1098/rsif.2005.0044
[5] 孙安强, 邓小燕. 一种螺旋型非圆形截面小口径人造血管内流场的计算机数值模拟[C]//2008年全国生物流变学与生物力学学术会议论文摘要集. 大连:中国生物物理学会, 2008:128-129.
SUN Anqiang, DENG Xiaoyan. Computer numerical simulation of the flow field in a spiral non-circular section small caliber artificial vessel[C]//Abstracts of the 2008 National Academic Conference on biorheology and biomechanics.Dalian :Biophysical Society of China, 2008:128-129.
[6] KOKKALIS E, HOSKINS P R, CORNER G A, et al. Vector doppler imaging and secondary flow patterns in vascular prostheses[C]//2012 IEEE International Ultrasonics Symposium. New Jersey:Institute of Electrical and Electronics Engineers, 2012:1-4.
[7] 张治国, 樊瑜波, 邓小燕, 等. 一种带有旋动流引导器的新型小口径人工血管流场的数值模拟[J]. 中国科学(C辑:生命科学), 2008(9):807-815.
ZHANG Zhiguo, FAN Yubo, DENG Xiaoyan, et al. Numerical simulation of flow field of a new small caliber artificial blood vessel with rotating flow guide[J]. Chinese Science (Series C: Life Science), 2008 (9):807-815.
[8] ZHENG TINGHUI, FAN YUBO, YAN XIONG, et al. Hemodynamic performance study on small diameter helical grafts[J]. ASAIO Journal, 2009,55(3):192-199.
doi: 10.1097/MAT.0b013e31819b34f2
[9] COOKSON A N, DOORLY D J, SHERWIN S J . Mixing through stirring of steady flow in small amplitude helical tubes[J]. Annals of Biomedical Engineering, 2009,37(4):710-721.
doi: 10.1007/s10439-009-9636-y
[10] HOJIN HA, DONGHA HWANG, WOO-RAK CHOI, et al. Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow[J]. Plos One, 2014,9(10):111047.
[11] NGUYEN K T, CLARK C D, CHANCELLOR T J, et al. Carotid geometry effects on blood flow and on risk for vascular disease[J]. Journal of Biomechanics, 2008,41(1):11-19.
[12] KILNER P J, YANG G Z, MOHIADDIN R H, et al. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping[J]. Circulation, 1993,88:2235-2247.
doi: 10.1161/01.CIR.88.5.2235
[13] 赵伟. 血液旋动流预防血管搭桥术后内膜增生的研究[D]. 贵阳:贵州大学, 2010:16-18.
ZHAO Wei. Study on the prevention of intimal hyperplasia after vascular bypass grafting by blood swirling flow[D]. Guiyang: Guizhou University, 2010:16-18.
[14] 徐在品, 赵伟, 孙安强, 等. 犬不同血管搭桥方法及搭桥血管内流场的计算机数值模拟[J]. 中国比较医学杂志, 2010,20(Z1):142-147.
XU Zaiping, ZHAO Wei, SUN Anqiang, et al. Computer numerical simulation of different vascular bypass methods and intravascular flow field in dogs[J]. Chinese Journal of Comparative Medicine, 2010,20(Z1):142-147.
[15] OWIDA A A, DO H, MORSI Y S. Numerical analysis of coronary artery bypass grafts: an over view[J]. Computer Methods and Programs in Biomedicine, 2012,108(2):689-705.
doi: 10.1016/j.cmpb.2011.12.005
[1] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[2] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[3] WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16.
[4] LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76.
[5] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[6] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[7] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[8] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[9] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[10] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[11] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[12] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[13] WANG Sheng;LI Yuling;LI Gang;CHEN Xuwei. Research on manufacture of double-layer bifurcated woven artificial blood vessel [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!