Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 104-112.doi: 10.13475/j.fzxb.20211106809

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and application of polyphosphazene modified zeolite imidazolate framework materials for flame retardancy of poly(ethylene terephthalate)

LI Baojie1,2, ZHU Yuanzhao1,2, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-11-12 Revised:2022-07-22 Online:2022-11-15 Published:2022-12-26
  • Contact: MAO Zhiping E-mail:zhpmao@dhu.edu.cn

Abstract:

In order to improve the flame retardancy of poly (ethylene terephthalate) (PET), a zeolite imidazolate framework material (ZIF-8) was fabricated from zinc nitrate hexahydrate and 2-methylimidazole. The surface of ZIF-8 were modified with hexachlorocyclotriphosphazene and 4,4-dihydroxydiphenylsulfone to synthesize a ZIF-8/PZS submicron particle. PET flame-retardant composites were prepared by melt blending with PET and their flame-retardant properties were investigated. Thermogravimetric analyzer, limiting oxygen index meter, vertical combustion meter, material testing machine and scanning electron microscope were used to analyze the thermal stability, flame retardancy, melt-dripping resistance, mechanical properties and flame-retardant mechanism of composite materials. The results show that the addition of 6% ZIF-8/PZS submicron particles increases the LOI value of PET to 29.2% and passes UL-94 V-0 level. The mechanical properties of the composite materials are not severely affected. ZIF-8/PZS can be effective in both the gas phase and the condensed phase, thereby giving PET composites excellent flame-retardant properties.

Key words: submicron particles, flame retardant fiber, anti-dripping, melt blending, poly (ethylene terephthalate), zeolite imidazolate framework materials

CLC Number: 

  • TS195.2

Fig.1

Synthetic route of ZIF-8/PZS submicron particles"

Tab.1

Formulation of different sample"

样品
编号
ZIF-8
质量/g
PZS
质量/g
ZIF-8/PZS
质量/g
PET
质量/g
总质量/
g
1# 100 100
2# 3 97 100
3# 3 97 100
4# 3 97 100
5# 6 94 100
6# 9 91 100

Fig.2

SEM images of ZIF-8 and ZIF-8/PZS"

Fig.3

XRD pattern of ZIF-8(a), FT-IR spectra of ZIF-8 and ZIF-8/PZS(b)"

Fig.4

TGA curves of ZIF-8 and ZIF-8/PZS"

Fig.5

TGA (a) and DTG (b) curves of PET and PET flame retardant composites under nitrogen"

Tab.2

TGA and DTG data of PET and its flame retardant composites"

样品编号 T-5%/
Tmax/
800 ℃残炭率/
%
最大分解速率/
(%·min-1)
1# 391 437 9.4 19.8
2# 343 418 14.2 17.9
3# 331 405 12.1 15.8
4# 339 421 15.3 15.3
5# 336 403 16.1 13.4
6# 335 416 16.4 13.9

Tab.3

LOI and vertical burning data of PET and its flame retardant composites"

样品编号 LOI值/% 垂直燃烧实验
UL94等级 熔滴 点燃脱脂棉
1# 23.1±0.1 V-2 严重
2# 26.0±0.1 V-1 缓慢
3# 25.5±0.1 V-1 严重
4# 27.3±0.1 V-0 很少
5# 29.2±0.1 V-0 很少
6# 30.6±0.1 V-0 很少

Fig.6

Heat release rate (a) and total heat release (b) versus time curves"

Fig.7

Curves of absorption intensity of pyrolysis products versus time. (a) CO2; (b) Benzoicaid; (c) Aromatic compound"

Fig.8

Images of char residues of 1# and 5# samples"

Fig.9

Raman spectra of char residues from 1# and 5#"

Tab.4

Contents of related elements in 5# sample and char residue"

样品 元素含量/(mg·g-1)
C N P Zn
5# 61.56 3.18 2.42 12.05
5#残炭 86.52 1.20 13.36 79.75

Fig.10

Tensile strength(a),elongation at break(b) and tensile modulus(c) of PET and PET flame retardant composite materials"

[1] CHU J, YIN X, HE M, et al. Substance flow analysis and environmental release of antimony in the life cycle of polyethylene terephthalate products[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.125252.
doi: 10.1016/j.jclepro.2020.125252
[2] GARCIA-ESCOBAR F, BONILLA-RIOS J, ESPINOZA-MARTINEZ A B, et al. Halloysite silanization in polyethylene terephthalate composites for bottling and packaging applications[J]. Journal of Materials Science, 2021, 56(29): 16376-16386.
doi: 10.1007/s10853-021-06337-8
[3] 孔抵柱, 李家炜, 徐红, 等. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(7): 11-17.
KONG Dizhu, LI Jiawei, XU Hong, et al. Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly (ethylene terethalate)[J]. Journal of Textile Research, 2017, 38(7): 11-17.
[4] 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179.
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179.
[5] 朱玉玺, 代亚敏, 王畅, 等. PET的含硼阻燃剂和磷腈阻燃剂协同阻燃整理[J]. 印染, 2017, 43(22): 1-7.
ZHU Yuxi, DAI Yamin, WANG Chang, et al. Synergistic flame-retardant finish of PET with boron-containing compounds and nitrile flame retardant[J]. China Dyeing & Finishing, 2017, 43(22): 1-7.
[6] ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188.
doi: 10.1016/j.polymdegradstab.2019.07.005
[7] 宋昆朋, 王银杰, 刘吉平, 等. 磷腈化合物在阻燃聚合物领域的研究进展[J]. 中国塑料, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018
SONG Kunpeng, WANG Yinjie, LIU Jiping, et al. Research progress in applications of phosphazene compounds in flame retardant polymers field[J]. China Plastics, 2021, 35(2): 107-118.
doi: 10.19491/j.issn.1001-9278.2021.02.018
[8] ZHAO S, HE M, LIU X, et al. Synthesis of a cyclomatrix-type polyphosphazenes microspheres and its flame retardancy on polycarbonate[J]. Scientia Sinica Chimica, 2017, 48(3): 282-288.
doi: 10.1360/N032017-00151
[9] MENG W, WU H, BI X, et al. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin[J]. Microporous and Mesoporous Materials, 2021. DOI: 10.1016/j.micromeso.2021.110885.
doi: 10.1016/j.micromeso.2021.110885
[10] JIAN R, LIN X, LIU Z, et al. Rationally designed zinc borate@ZIF-8 core-shell nanorods for curing epoxy resins along with low flammability and high mechanical property[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108349.
doi: 10.1016/j.compositesb.2020.108349
[11] ZHANG J, FANG J, HAN J, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252.
doi: 10.1039/C8TA04813D
[12] SHI X, DAI X, CAO Y, et al. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3887-3894.
doi: 10.1021/acs.iecr.6b04204
[13] LI S, LI T, WANG X, et al. Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate[J]. Polymers for Advanced Technologies, 2020, 31(6): 1194-1207.
doi: 10.1002/pat.4873
[14] LV X, ZENG W, YANG Z, et al. Fabrication of ZIF-8@Polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin[J]. Polymers for Advanced Technologies, 2020, 31(5): 997-1006.
doi: 10.1002/pat.4834
[15] JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465: 67-76.
doi: 10.1016/j.colsurfa.2014.10.023
[16] WEI W, LU R, XIE H, et al. Selective adsorption and separation of dyes from an aqueous solution on organic-inorganic hybrid cyclomatrix polyphosphazene submicro-spheres[J]. Journal of Materials Chemistry A, 2015, 3(8): 4314-4322.
doi: 10.1039/C4TA06444E
[17] 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J], 纺织学报, 2019, 40(10): 13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10): 13-19.
[18] QIU S, WANG X, YU B, et al. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins[J]. J Hazard Mater, 2017, 325: 327-339.
doi: S0304-3894(16)31087-1 pmid: 27932036
[19] LI T, LI S, MA T, et al. Flame-retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire[J]. Polymers for Advanced Technologies, 2019, 31(4): 795-806.
doi: 10.1002/pat.4815
[20] XU W, WANG G, XU J, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. J Hazard Mater, 2019. DOI: 10.1016/j.jhazmat.2019.120819.
doi: 10.1016/j.jhazmat.2019.120819
[21] XU W, WANG G, LIU Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances, 2018, 8(5): 2575-2585.
doi: 10.1039/C7RA12816A
[22] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(7): 11-18.
LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group[J]. Journal of Textile Research, 2021, 42(7): 11-18.
[1] JIN Wenjie, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance [J]. Journal of Textile Research, 2022, 43(02): 171-175.
[2] XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9.
[3] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[4] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[5] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[6] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[7] SUN Chenying, WANG Wenqing, JIN Gaoling, WANG Rui. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior [J]. Journal of Textile Research, 2021, 42(06): 171-179.
[8] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[9] CHENG Tong, YAO Yongbo, CHEN Zhongli, JIN Hong, WU Kaijian, WANG Lejun, LIU Yining, ZHANG Yumei. Preparation of flame retardant aromatic polysulfonamide/cellulose fibers with N-methylmorpholine-N-oxide monohydrate as solvent [J]. Journal of Textile Research, 2019, 40(07): 1-76.
[10] LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12.
[11] . Effect of combined anti-dripping additive on properties of flame resistant polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 15-21.
[12] . Hydrophilic modification of polypropylene fibers prepared by melt electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 13-18.
[13] . Preparation and performance of biodegradable slice of poly (propylene carbonate) / polypropylene for nonwoven fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 15-21.
[14] ZHU Shi-Feng, SHI Mei-Wu. Current status and developing trend of research on anti-dripping of thermoplastic fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 121-124.
[15] ZHENG Zhenrong;GU Zhenya;YANG Eenfang;WANG Lejun. Effect of fabric structures on the flame retardant property of Anti-fcell® fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(02): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .