Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 138-143.doi: 10.13475/j.fzxb.20211107706

• Apparel Engineering • Previous Articles     Next Articles

Testing and application for change rate of inflation size of inflatable warm clothing

MIAO Xue1, WANG Yongjin1(), WANG Fangming2   

  1. 1. School of Fashion, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Suzhou Xingfengqiang Textile Technology Co., Ltd., Suzhou, Jiangsu 215227, China
  • Received:2021-11-17 Revised:2022-09-21 Online:2022-12-15 Published:2023-01-06
  • Contact: WANG Yongjin E-mail:fzywyj@bift.edu.cn

Abstract:

Change rate of inflation size of inflatable warm clothing directly affects the design and production of such products. In order to better grasp the relationship between the two, 6 different inflatable fabrics of the same laminating shape, with 30%, 50%, 70%, 100% different inflatable states, were tested, and the change rate of inflation size of these clothing models were evaluated in the warp and weft directions. The experimental results show that the amount of inflation and the change rate of inflation size have a strong positive correlation. For different fabrics with the same inflation, the warp change rate of inflation size rate is greater than the weft change rate of inflation size, and when the inflatable state reaches about 70%, the increase in the warp change rate of inflation size rate weakens, and the weft change rate of inflation size rate gradually becomes smaller. Through the analysis, the maximum warp and weft change rate of inflation size rates of the inflatable garment are obtained, which can be used as a design reference for the increase in the size required to increase the size of the inflatable garment in addition to the basic length and circumference. The change rate of inflation size was applied to the size design of the inflatable warm clothing sample according to the push layout release method.

Key words: inflatable clothing, warm clothing, inflation amount, change rate of size, clothing model

CLC Number: 

  • TS941.7

Fig. 1

Description of internal structure of inflatable fabric. (a) Diagram of internal structure of inflatable fabric; (b) Horizontal strip flower pattern(3 cm)"

Tab.1

Basic information about inflatable fabrics"

面料
编号
面布 底布 PU膜 面密度/
(g·m-2)
1 450 tex高弹春亚纺 同面布 15代膜 186
2 270 tex高弹春亚纺 同面布 15代膜 166
3 270 tex斜高弹春亚纺 450 tex飘纱 15代膜 164
4 斜高弹雪梨纺 同面布 15代膜 213
5 平纹雪梨纺 同面布 15代膜 246
6 锦纶四面弹 同面布 15代膜 263

Fig. 2

Fabric specimen schematic. (a) Sample A; (b) Sample B"

Tab.2

Test results of fabric shrinks%"

面料编号 经向 纬向
1 0.70 0.33
2 0.75 0.30
3 0.80 0.35
4 0.90 0.40
5 0.60 0.24
6 0.65 0.30

Tab.3

Fabric inflatable indentation test results%"

充气量
比例
面料1 面料2 面料3 面料4 面料5 面料6
经向 纬向 经向 纬向 经向 纬向 经向 纬向 经向 纬向 经向 纬向
30 1.75 1.25 1.75 1.25 2.00 1.25 2.50 1.75 2.00 1.00 3.00 1.25
50 8.00 6.75 5.75 4.50 8.75 6.75 8.25 6.25 9.50 7.00 10.75 7.50
70 15.50 13.75 17.00 13.25 18.75 12.00 17.50 13.00 18.00 12.50 17.50 10.75
100 19.25 11.25 18.25 10.75 18.75 9.25 18.75 10.00 18.75 11.25 18.75 3.75

Fig. 3

Longitude(a) and latitude(b) indentation experiments of different inflatable amounts"

Tab.4

Analysis of Pearson correlation of inflatable indentation%"

因子 面料 充气量 经向尺寸变化率 纬向尺寸变化率
皮尔逊相关性 Sig.双侧 皮尔逊相关性 Sig.双侧 皮尔逊相关性 Sig.双侧 皮尔逊相关性 Sig.双侧
面料 1.000 0.000 1.000 0.076 0.723 -0.114 0.596
充气量 0.000 1.000 1.000 0.929** 0.000 0.710** 0.000
经向尺寸变化率 0.076 0.723 0.929** 0.000 1.000 0.876** 0.000
纬向尺寸变化率 -0.114 0.596 0.710** 0.000 0.876** 0.000 1.000

Fig. 4

Trend chart of changes in different indentations of longitude(a) and latitude(b)"

Tab.5

Average longitude and latitude shrinkage %"

充气量占比 平均经向尺寸变化率 平均纬向尺寸变化率
30 2.17 1.29
50 8.50 6.46
70 17.38 12.54
100 18.75 9.38

Fig. 5

Diagram of push rule taking 170/88A menswear as an example. (a) Front plate; (b) Rear plate"

[1] 苏文桢, 宋文芳, 卢业虎, 等. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(2): 115-118.
SU Wenzhen, SONG Wenfang, LU Yehu, et al. The warmth performance of inflatable cold suits[J]. Journal of Textiles Research, 2020, 41 (2): 115-118.
[2] 苏文桢, 卢业虎, 王方明, 等. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(5): 140-145.
SU Wenzhen, LU Yehu, WANG Fangming, et al. Development and warmth evaluation of the new inflatable jacket[J]. Journal of Textiles Research, 2020, 41 (5): 140-145.
[3] 郝静雅, 李艳梅, 王方明. 充气保暖服装的热湿舒适性分析[J]. 服装学报, 2020, 5(3): 200-205.
HAO Jingya, LI Yanmei, WANG Fangming. Thermal and wet comfort analysis of inflatable warm clothing[J]. Journal of Clothing, 2020, 5 (3): 200-205.
[4] 崔彦. 智能形变调温服装设计及舒适性测评研究[D]. 上海: 东华大学, 2021:128-136.
CUI Yan. Intelligent deformation temperature clothing design and comfort assessment study[D]. Shanghai: Donghua University, 2021:128-136.
[5] 王方明, 王徐涛. 一种可充空气保暖衣物面料结构:202011276583.2[P]. 2020-12-18.
WANG Fangming, WANG Xutao. A fabric structure that can be filled with air to keep warm clothing:202011276583.2[P]. 2020-12-18.
[6] SONG Wenfang, LU Yehu, SU Wenzhen, et al. Investigation on the thermal insulation regulating performance of a newly developed air inflatable gar-ment[J]. Journal of Cleaner Production, 2021(293): 1-10.
[7] 周洪梅. 浅析面料相关性能对服装结构设计的影响[J]. 山东纺织经济, 2018(4): 49-50.
ZHOU Hongmei. Analysis of the effect of fabric-related properties on the design of clothing structure[J]. Shandong Textile Economy, 2018 (4): 49-50.
[8] 周冰洁. 空气保暖概念服设计研究[D]. 北京: 北京服装学院, 2016:10-15.
ZHOU Bingjie. Study on the design of air-warming concept clothing[D]. Beijing: Beijing Institute of Fashion Technology, 2016:10-15.
[9] 武英敏. 材料性能与粘合温度对成衣尺寸的影响[D]. 苏州: 苏州大学, 2006:18-25.
WU Yingmin. Effect of material performance and bonding temperature on garment size[D]. Soochow: Suzhou University, 2006:18-25.
[10] 束重华. “量”、“型”统一服装推板方法[J]. 纺织导报, 2009(12): 74-75.
SHU Zhonghua. "Quantity" and "type" unified clothing push board method[J]. China Textile Leader, 2009 (12): 74-75.
[11] 彭泽洋, 库茨米切夫·维克多. 基于平衡性原则对服装推板合体性的研究[J]. 服饰导刊, 2017, 6(4): 54-61.
PENG Zeyang, KUZMICHEV Victor. Study on the fit of clothing push board based on the principle of bala-nce[J]. Clothing Guide, 2017, 6 (4): 54-61.
[12] 张益洁, 李涛, 吕叶馨, 等. 服装松量设计及表征模型构建研究进展[J]. 纺织学报, 2021, 42(4): 184-190.
ZHANG Yijie, LI Tao, LÜ Yexin, et al. Advances in the design of clothing pine and the construction of characterization models[J]. Journal of Textiles Research, 2021, 42 (4): 184-190.
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
[2] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
[3] . Generation of intelligent fitting pattern based on BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!