Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 1-6.doi: 10.13475/j.fzxb.20211109306
• Invited Column: Expert Opinion of the 11th China Textile Academic Conferenc • Next Articles
GU Zhanghong1,2, YAO Xiang1,2, WANG Jinsi1,2, ZHANG Yaopeng1,2()
CLC Number:
[1] |
CIPITRIA A, SKELTON A, DARGAVILLE T R, et al. Design, fabrication and characterization of PCL electrospun scaffolds:a review[J]. Journal of Materials Chemistry, 2011, 21(26): 9419-9453.
doi: 10.1039/c0jm04502k |
[2] |
DING J X, ZHANG J, LI J N, et al. Electrospun polymer biomaterials[J]. Progress in Polymer Science, 2019, 90: 1-34.
doi: 10.1016/j.progpolymsci.2019.01.002 |
[3] | CHEN W M, XU Y, LIU Y Q, et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration[J]. Materials & Design, 2019, 179: 107886. |
[4] |
YAO X, PENG R, DING J D. Cell-material interactions revealed via material techniques of surface patterning[J]. Advanced Materials, 2013, 25(37): 5257-5286.
doi: 10.1002/adma.201301762 |
[5] |
LIU M, ZENG X, MA C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Research, 2017, 5: 17014.
doi: 10.1038/boneres.2017.14 |
[6] |
LU L, FAN S N, GENG L H, et al. Flow analysis of regenerated silk fibroin/cellulose nanofiber suspensions via a bioinspired microfluidic chip[J]. Advanced Materials Technologies, 2021, 6(10): 2100124.
doi: 10.1002/admt.202100124 |
[7] |
BADAMI A S, KREKE M R, THOMPSON M S, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates[J]. Biomaterials, 2006, 27(4): 596-606.
doi: 10.1016/j.biomaterials.2005.05.084 |
[8] |
GHOBEIRA R, PHILIPS C, LIEFOOGHE L, et al. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior[J]. Applied Surface Science, 2019, 485: 204-221.
doi: 10.1016/j.apsusc.2019.04.109 |
[9] |
ZOU S Z, WANG X R, FAN S N, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors[J]. Journal of Materials Chemistry B, 2021, 9(27): 5514-5527.
doi: 10.1039/D1TB00944C |
[10] |
YANG S, ZHU J, LU C, et al. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery[J]. Bioactive Materials, 2022, 8: 529-544.
doi: 10.1016/j.bioactmat.2021.05.056 |
[11] | SILVA J C, UDANGAWA R N, CHEN J L, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 107: 12. |
[12] | LI Z B, LIU Q Q, WANG H S, et al. Bladder acellular matrix graft reinforced silk fibroin composite scaffolds loaded VEGF with aligned electrospun fibers in multiple layers[J]. ACS Biomaterials Science & Engineering, 2015, 1(4): 238-246. |
[13] |
YAO X, WANG X L, DING J D. Exploration of possible cell chirality using material techniques of surface patterning[J]. Acta Biomaterialia, 2021, 126: 92-108.
doi: 10.1016/j.actbio.2021.02.032 |
[14] | YAO X, DING J D. Effects of microstripe geometry on guided cell migration[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 27971-27983. |
[15] | YAO X, LIU R, LIANG X, et al. Critical areas of proli-feration of single cells on micropatterned surfaces and corresponding cell type dependence[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15366-15380. |
[16] |
HA M, ATHIRASALA A, TAHAYERI A, et al. Micropatterned hydrogels and cell alignment enhance the odontogenic potential of stem cells from apical papilla in-vitro[J]. Dental Materials, 2020, 36(1): 88-96.
doi: 10.1016/j.dental.2019.10.013 |
[17] |
ANTMEN E, DEMIRCI U, HASIRCI V. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110402.
doi: 10.1016/j.colsurfb.2019.110402 |
[18] | 姚响. 基于材料表面图案化技术研究细胞形状和表面手性特征对干细胞黏附与分化的影响[D]. 上海: 复旦大学, 2014: 1-194. |
YAO Xiang. Effects of cell shape and surface chirality on adhesion and differentiation of stem cells revealed via material techniques of surface patterning[D]. Shanghai: Fudan University, 2014: 1-194. | |
[19] |
CHEN J, ZHUANG A, SHAO H, et al. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration[J]. Journal of Materials Chemistry B, 2017, 5(20): 3640-3650.
doi: 10.1039/C7TB00485K |
[20] |
LEE J H, KOPECEK J, ANDRADE J D. Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants[J]. Journal of Biomedical Materials Research, 1989, 23(3): 351-368.
doi: 10.1002/jbm.820230306 |
[21] |
LIU V A, JASTROMB W E, BHATIA S N. Engineering protein and cell adhesivity using PEO-terminated triblock polymers[J]. Journal of Biomedical Materials Research, 2002, 60(1): 126-134.
doi: 10.1002/jbm.10005 |
[22] | ZARKOOB S, RENEKER D H, EBY R K, et al. Structure and morphology of nano electrospun silk fibers[J]. Abstracts of Papers of the American Chemical Society, 1998, 216(3): 122. |
[23] | HUANG L, HUANG J, SHAO H, et al. Silk scaffolds with gradient pore structure and improved cell infiltration performance[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019, 94: 179-189. |
[24] |
ZHU J X, ZHANG Y P, SHAO H L, et al. Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: the effects of pH and concentration[J]. Polymer, 2008, 49(12): 2880-2885.
doi: 10.1016/j.polymer.2008.04.049 |
[25] |
ZHU Z H, OHGO K, ASAKURA T. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength[J]. Express Polymer Letters, 2008, 2(12): 885-889.
doi: 10.3144/expresspolymlett.2008.103 |
[26] |
LU Y, JIANG J W, PARK S, et al. Wet-spinning fabrication of flexible conductive composite fibers from silver nanowires and fibroin[J]. Bulletin of the Korean Chemical Society, 2020, 41(2): 162-169.
doi: 10.1002/bkcs.11945 |
[27] |
YAO X, PENG R, DING J. Effects of aspect ratios of stem cells on lineage commitments with and without induction media[J]. Biomaterials, 2013, 34(4): 930-939.
doi: 10.1016/j.biomaterials.2012.10.052 |
[28] | DORISHETTY P, BALU R, ATHUKORALALAGE S S, et al. Tunable biomimetic hydrogels from silk fibroin and nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2375-2389. |
[29] |
HU X, KAPLAN D, CEBE P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy[J]. Macromolecules, 2006, 39(18): 6161-6170.
doi: 10.1021/ma0610109 |
[30] | 刘明. FTIR对丝素蛋白构象的研究[D]. 杭州: 浙江大学, 2006:1-68. |
LIU Ming. Studies on the conformation of silk fibroin by FTIR[D]. Hangzhou: Zhejiang University, 2006: 1-68. |
|