Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20211109707
• Invited Column: Biomedical Textiles • Next Articles
QIAO Yansha1,2, MAO Ying1,2, XU Danyao1,2, LI Yan1,2, LI Shaojie3, WANG Lu1,2(), TANG Jianxiong3
CLC Number:
[1] |
JENKINS J T, O'DWYER P J. Inguinal hernias[J]. The British Medical Journal, 2008,336(7638):269-272.
doi: 10.1136/bmj.39450.428275.AD |
[2] |
KINGSNORTH A, LEBLANC K. Hernias: inguinal and incisional[J]. Lancet, 2003,362(9395):1561-1571.
doi: 10.1016/S0140-6736(03)14746-0 |
[3] |
KALABA S, GERHARD E, WINDER J S, et al. Design strategies and applications of biomaterials and devices for hernia repair[J]. Bioactive Materials, 2016,1(1):2-17.
doi: 10.1016/j.bioactmat.2016.05.002 |
[4] |
BROWN C N, FINCH J G. Which mesh for hernia repair?[J]. Annals of the Royal College of Surgeons of England, 2010,92(4):272-278.
doi: 10.1308/003588410X12664192076296 |
[5] |
WISE J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds[J]. The British Medical Journal, 2018,362:k4104. DOI: 10.1136/bmj.k4104.
doi: 10.1136/bmj.k4104 |
[6] | FALAGAS M E, KASIAKOU S K. Mesh-related infections after hernia repair surgery[J]. Clinical Microbiology and Infection, 2005,11(1):3-8. |
[7] |
GUILLAUME O, PEREZ-TANOIRA R, FORTELNY R, et al. Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution?[J]. Biomaterials, 2018,167:15-31.
doi: 10.1016/j.biomaterials.2018.03.017 |
[8] | CHANDORKAR Y, RAVIKUMAR K, BASU B. The foreign body response demystified[J]. ACS Biomaterials Science & Engineering, 2018,5(1):19-44. |
[9] |
ANDERSON J M, RODRIGUEZ A, CHANG D T. Foreign body reaction to biomaterials[J]. Seminars in Immunology, 2008,20(2):86-100.
doi: 10.1016/j.smim.2007.11.004 |
[10] |
ZHU L M. Mesh implants: an overview of crucial mesh parameters[J]. World Journal of Gastrointestinal Surgery, 2015,7(10):226-236.
doi: 10.4240/wjgs.v7.i10.226 |
[11] |
SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018,48(1):333-360.
doi: 10.1177/1528083717690613 |
[12] |
PAPADIMITRIOU J, PETROS P. Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils[J]. Hernia, 2005,9(1):75-78.
doi: 10.1007/s10029-004-0286-6 |
[13] |
ENGELSMAN A F, VAN H C, BUSSCHER H J, et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization[J]. British Journal of Surgery, 2008,95(8):1051-1059.
doi: 10.1002/bjs.6154 |
[14] |
KLINGE U, JUNGE K, SPELLERBERG B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model[J]. Journal of Biomedical Materials Research, 2002,63(6):765-771.
doi: 10.1002/(ISSN)1097-4636 |
[15] |
DIAZ-GODOY A, GARCIA-URENA M A, LOPEZ-MONCLUS J, et al. Searching for the best polypropylene mesh to be used in bowel contamination[J]. Hernia, 2011,15(2):173-179.
doi: 10.1007/s10029-010-0762-0 |
[16] |
ZOGBI L, TRINDADE E N, TRINDADE M R. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013,17(6):765-772.
doi: 10.1007/s10029-013-1046-2 |
[17] |
RUTEGARD M, GUMUSCU R, STYLIANIDIS G, et al. Chronic pain, discomfort, quality of life and impact on sex life after open inguinal hernia mesh repair: an expertise-based randomized clinical trial comparing lightweight and heavyweight mesh[J]. Hernia, 2018,22(3):411-418.
doi: 10.1007/s10029-018-1734-z |
[18] |
CARRO J L P, RIU S V, LOJO B R, et al. Randomized clinical trial comparing low density versus high density meshes in patients with bilateral inguinal hernia[J]. American Surgeon, 2017,83(12):1352-1356.
doi: 10.1177/000313481708301217 |
[19] |
BONA S, ROSATI R, OPOCHER E, et al. Pain and quality of life after inguinal hernia surgery: a multicenter randomized controlled trial comparing lightweight vs heavyweight mesh (supermesh study)[J]. Updates in Surgery, 2018,70(1):77-83.
doi: 10.1007/s13304-017-0483-3 |
[20] |
YABANOGLU H, ARER I M, CALISKAN K. The effect of the use of synthetic mesh soaked in antibiotic solution on the rate of graft infection in ventral hernias: a prospective randomized study[J]. International Surgery, 2015,100(6):1040-1047.
doi: 10.9738/INTSURG-D-14-00304.1 |
[21] |
HAJIPOUR M J, FROMM K M, ASHKARRAN A A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012,30(10):499-511.
doi: 10.1016/j.tibtech.2012.06.004 |
[22] |
BROWNE K, CHAKRABORTY S, CHEN R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. International Journal of Molecular Sciences, 2020,21(19).DOI: 10.3390/ijms21197047.
doi: 10.3390/ijms21197047 |
[23] |
SANBHAL N, LI Y, KHATRI A, et al. Chitosan cross-linked bio-based antimicrobial polypropylene meshes for hernia repair loaded with levofloxacin HCl via cold oxygen plasma[J]. Coatings, 2019,9(3).DOI: 10.3390/coatings9030168.
doi: 10.3390/coatings9030168 |
[24] |
SAITAER X, SANBHAL N, QIAO Y S, et al. Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: antibacterial and drug release properties[J]. Coatings, 2019,9(3). DOI: 10.3390/coatings9030164.
doi: 10.3390/coatings9030164 |
[25] |
SANBHAL N, SAITAER X, LI Y, et al. Controlled levofloxacin release and antibacterial properties of-cyclodextrins-grafted polypropylene mesh devices for hernia repair[J]. Polymers, 2018,10(5).DOI: 10.3390/polym10050493.
doi: 10.3390/polym10050493 |
[26] |
PEREZ-KOHLER B, PASCUAL G, BENITO-MARTINEZ S, et al. Thermo-responsive antimicrobial hydrogel for the in-situ coating of mesh materials for hernia repair[J]. Polymers, 2020,12(6). DOI: 10.3390/polym12061245.
doi: 10.3390/polym12061245 |
[27] |
REINBOLD J, HIERLEMANN T, URICH L, et al. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections[J]. Drug Design Development and Therapy, 2017,11:2753-2762.
doi: 10.2147/DDDT |
[28] |
PEREZ-KOHLER B, LINARDI F, PASCUAL G, et al. Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating[J]. Hernia, 2020,24(6):1201-1210.
doi: 10.1007/s10029-019-02096-3 |
[29] |
FERNANDEZ-GUTIERREZ M, PEREZ-KOHLER B, BENITO-MARTINEZ S, et al. Development of biocomposite polymeric systems loaded with antibacterial nanoparticles for the coating of polypropylene biomaterials[J]. Polymers, 2020,12(8). DOI: 10.3390/polym12081829.
doi: 10.3390/polym12081829 |
[30] |
BENITO-MARTINEZ S, PEREZ-KOHLER B, RODRIGUEZ M, et al. Antibacterial biopolymer gel coating on meshes used for abdominal hernia repair promotes effective wound repair in the presence of infection[J]. Polymers, 2021,13(14). DOI: 10.3390/polym13142371.
doi: 10.3390/polym13142371 |
[31] |
SANBHAL N, MAO Y, SUN G, et al. Preparation and characterization of antibacterial polypropylene meshes with covalently incorporated beta-cyclodextrins and captured antimicrobial agent for hernia repair[J]. Polymers, 2018,10(1). DOI: 10.3390/polym10010058.
doi: 10.3390/polym10010058 |
[32] |
PEREZ-KOHLER B, BENITO-MARTINEZ S, RODRIGUEZ M, et al. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes[J]. Hernia, 2019,23(4):789-800.
doi: 10.1007/s10029-019-01917-9 |
[33] |
PEREZ-KOHLER B, FERNANDEZ-GUTIERREZ M, PASCUAL G, et al. In vitro assessment of an antibacterial quaternary ammonium-based polymer loaded with chlorhexidine for the coating of polypropylene prosthetic meshes[J]. Hernia, 2016,20(6):869-878.
doi: 10.1007/s10029-016-1537-z |
[34] |
MUZIO G, PERERO S, MIOLA M, et al. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017,105(6):1586-1593.
doi: 10.1002/jbm.b.v105.6 |
[35] |
ADIGUZEL E N, ESEN E, AYLAZ G, et al. Do nano-crystalline silver-coated hernia grafts reduce infection?[J]. World Journal of Surgery, 2018,42(11):3537-3542.
doi: 10.1007/s00268-018-4661-3 |
[36] |
SAHA T, HOUSHYAR S, SARKER S R, et al. Nanodiamond-chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity[J]. Journal of Biomedical Materials Research Part A, 2021,109(12):2449-2461.
doi: 10.1002/jbm.a.v109.12 |
[37] |
DE M I, PRIETO I, ALBORNOZ A, et al. Plasmon-based biofilm inhibition on surgical implants[J]. Nano Letters, 2019,19(4):2524-2529.
doi: 10.1021/acs.nanolett.9b00187 |
[38] |
LIU P B, CHEN N L, JIANG J H, et al. Preparation and in vitro evaluation of new composite mesh functionalized with cationic antimicrobial peptide[J]. Materials, 2019,12(10). DOI: 10.3390/ma12101676.
doi: 10.3390/ma12101676 |
[39] |
BUSSCHER H J, VAN H C, SUBBIAHDOSS G, et al. Biomaterial-associated infection: locating the finish line in the race for the surface[J]. Science Translational Medicine, 2012,4(153). DOI: 10.1126/scitranslmed.3004528.
doi: 10.1126/scitranslmed.3004528 |
[40] |
TANDON A, SHAHZAD K, PATHAK S, et al. Parietex(TM) composite mesh versus Dyna-Mesh((R))-IPOM for laparoscopic incisional and ventral hernia repair: a retrospective cohort study[J]. Annals of the Royal College of Surgeons of England, 2016,98(8):568-573.
doi: 10.1308/rcsann.2016.0292 |
[41] | ZHANG T Z, ZHANG Z G, HU W J, et al. Preparation of poly(vinyl alcohol) modified polypropylene mesh and its antiadhesion efficacy in experimental hernia repair[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016,500:10-16. |
[42] |
HU M H, LIN X D, HUANG R K, et al. Lightweight, highly permeable, biocompatible, and antiadhesive composite meshes for intraperitoneal repairs[J]. Macromolecular Bioscience, 2018,18(7). DOI: 10.1002/mabi.201800067.
doi: 10.1002/mabi.201800067 |
[43] |
EMANS P, SCHREINEMACHER M, GIJBELS M, et al. Polypropylene meshes to prevent abdominal herniation. can stable coatings prevent adhesions in the long term?[J]. Annals of Biomedical Engineering, 2009,37(2):410-418.
doi: 10.1007/s10439-008-9608-7 |
[44] | HU W J, ZHANG Z G, ZHU L, et al. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model[J]. ACS Biomaterials Science & Engineering, 2020,6(3):1735-1743. |
[45] |
KONAR S, GUHA R, KUNDU B, et al. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion[J]. Hernia, 2017,21(1):125-137.
doi: 10.1007/s10029-016-1484-8 |
[46] | SEZER U A, SANKO V, GULMEZ M, et al. A polypropylene-integrated bilayer composite mesh with bactericidal and antiadhesive efficiency for hernia operations[J]. ACS Biomaterials Science & Engineering, 2017,3(12):3662-3674. |
[47] | SEZER U A, SANKO V, GULMEZ M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019,99:1141-1152. |
[48] |
YANG D C, SONG Z C, SHEN J L, et al. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model[J]. Artificial Cells Nanomedicine and Biotechnology, 2020,48(1):425-434.
doi: 10.1080/21691401.2019.1709858 |
[49] |
BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization[J]. Acta Biomaterialia, 2016,31:221-230.
doi: 10.1016/j.actbio.2015.11.057 |
[50] |
BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia[J]. Acta Biomaterialia, 2018,71:318-329.
doi: 10.1016/j.actbio.2018.02.014 |
[51] | 张方捷, 高国栋, 叶静, 等. 脂肪干细胞覆膜聚丙烯补片减轻疝修补术后炎症反应的研究[J]. 浙江中西医结合杂志, 2017,27(3):180-183. |
ZHANG Fangjie, GAO Guodong, YE Jing, et al. Effect of adipose-derived stem cells coated polypropylene patch on the inflammation after herniorrhaphy[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2017,27(3):180-183. | |
[52] |
DENG Y, REN J, CHEN G, et al. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen[J]. Journal of Biomaterials Applications, 2016,31(2):302-314.
doi: 10.1177/0885328216645950 |
[53] |
LO T, LIN Y H, YUSOFF F M, et al. The immunohistochemical and urodynamic evaluation towards the collagen-coated and non-coated polypropylene meshes implanted in the pelvic wall of the rats[J]. Scientific Reports, 2016,6(1):1-9.
doi: 10.1038/s41598-016-0001-8 |
[54] |
ACKERMANN M, WANG X, WANG S, et al. Collagen-inducing biologization of prosthetic material for hernia repair: polypropylene meshes coated with polyP/collagen[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,106(6):2109-2121.
doi: 10.1002/jbm.b.v106.6 |
[55] |
QIAO Y S, ZHANG Q, WANG Q, et al. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects[J]. Acta Biomaterialia, 2021,128:277-290.
doi: 10.1016/j.actbio.2021.04.013 |
[56] | QIAO Y S, ZHANG Q, WANG Q, et al. Synergistic anti-inflammatory coating "zipped up" on polypropylene hernia mesh[J]. ACS Applied Materials & Interfaces, 2021,13(30):35456-35468. |
[57] |
COINDRE V F, CARLETON M M, SEFTON M V. Methacrylic acid copolymer coating enhances constructive remodeling of polypropylene mesh by increasing the vascular response[J]. Advanced Healthcare Materials, 2019,8(18). DOI: 10.1002/adhm.201900667.
doi: 10.1002/adhm.201900667 |
[58] |
PRUDENTE A, FAVARO W J, REIS L O, et al. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis[J]. International Urology and Nephrology, 2017,49(4):597-605.
doi: 10.1007/s11255-017-1520-3 |
[59] |
KARABULUT A, SIMAVLI S A, ABBAN G M, et al. Tissue reaction to urogynecologic meshes: effect of steroid soaking in two different mesh models[J]. International Urogynecology Journal, 2016,27(10):1583-1589.
doi: 10.1007/s00192-016-3013-9 |
[60] |
GIL D, REX J, COBB W, et al. Anti-inflammatory coatings of hernia repair meshes: a pilot study[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018,106(2):589-597.
doi: 10.1002/jbm.b.v106.2 |
[61] |
HACHIM D, LOPRESTI S T, YATES C C, et al. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration[J]. Biomaterials, 2017,112:95-107.
doi: 10.1016/j.biomaterials.2016.10.019 |
[62] |
DU S P, GARCIA A G, VERGES J, et al. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate[J]. Journal of Cellular and Molecular Medicine, 2009,13(8A):1451-1463.
doi: 10.1111/j.1582-4934.2009.00826.x |
[63] |
VENAULT A, CHANG Y. Designs of zwitterionic interfaces and membranes[J]. Langmuir, 2018,35(5):1714-1726.
doi: 10.1021/acs.langmuir.8b00562 |
[1] | LI Tianhua, LI Jingjing, ZHANG Keqin, ZHAO Huijing, MENG Kai. Numerical simulation of hemodynamics in spiral artificial blood vessel [J]. Journal of Textile Research, 2022, 43(03): 17-23. |
[2] | FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43. |
[3] | WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16. |
[4] | LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76. |
[5] | CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136. |
[6] | LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89. |
[7] | SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184. |
[8] | ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189. |
[9] | YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45. |
[10] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[11] | ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72. |
[12] | LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41. |
[13] | QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166. |
[14] | ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174. |
[15] | LIU Bingqian, SHENG Dan, PAN Heng, CAO Genyang. Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers [J]. Journal of Textile Research, 2019, 40(04): 15-20. |
|