Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (03): 38-43.doi: 10.13475/j.fzxb.20211109806

• Invited Column: Biomedical Textiles • Previous Articles     Next Articles

Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence

FANG Meiqi1,2, WANG Qian1,2, LI Yan1,2,3, LI Chaojing1,2,3(), LI Hao4, WANG Lu1,2,3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
    4. Shanghai Hongyu Medical Tech Co., Ltd., Shanghai 201400, China
  • Received:2021-11-24 Revised:2022-01-04 Online:2022-03-15 Published:2022-03-29
  • Contact: LI Chaojing E-mail:lcj@dhu.edu.cn

Abstract:

To improve the postoperative erosion of female stress urinary incontinence, a sling with laser-cut diamond-shaped pores and a sling with rectangular pore shapes and self-locking edge were designed. The mesh width, thickness, density, ratio of course density to wale density, pore size, porosity, and effective porosity were characterized and analyzed. The test results of the uniaxial tension and constant load tension test, and the long-term effectiveness and the shrinkage of the two types of slings were discussed and studied. The results show that the two slings are light-weight with large pores, meeting the requirements of high effective porosity, and there is no significant difference between the two in breaking strength and elongation. However, the elastic modulus and flexural stiffness of rectangular mesh sling are obviously larger than that of diamond mesh sling, having higher effective porosity, better dimensional stability and more significant supporting effect of urethral wall under both 2.5 and 16 N/cm loading. The flexibility of the slings would need further improvement.

Key words: sling for female stress urinary incontinence, tension-free mid-urethral sling procedure, medical textiles, fabric structure, mechanical property in-vitro

CLC Number: 

  • TS181

Fig.1

Warp knitting morphological structures and lapping movements. (a) Warp knitting morphological structures of sling A; (b) Lapping movements of sling A; (c) Warp knitting morphological structures of sling B; (d) Lapping movements of sling B"

Fig.2

Examples of mesh pore and pore size measurement of sling A(a) and sling B(b)"

Tab.1

Parameters of mesh pore (P<0.05)"

样品 最大网孔间距/mm 孔隙率/% 有效孔隙率/%
吊带A 1.55±0.08 67.82±0.70 55.62±0.12
吊带B 1.88±0.06 73.55±2.50 57.17±1.00

Tab.2

Parameters of sling structure"

样品 宽度/cm 厚度/mm 面密度/
(g·m-2)
横密/
(纵行·cm-1)
纵密/
(横列·cm-1)
线圈密度/
(个·cm-2)
密度对比
系数K
吊带A 1.29±0.10 0.369±0.001 46.4 9 9 81 1
吊带B 1.69±0.10 0.497±0.010 40.0 7 18 126 0.39

Fig.3

Representative stress-strain curves of sling A(a) and sling B(b)"

Fig.4

Comparison of axial tensile properties of sling A and sling B"

Fig.5

Macro images of axial tensile properties of sling A (a) and sling B (b)"

Tab.3

Comparison of constant-load test of sling A and sling B"

负荷/
(N·cm-1)
孔隙率/% 有效孔隙率/% 横向皱缩率/% 塑性变形率/% 弹性回复率/%
吊带A 吊带B 吊带A 吊带B 吊带A 吊带B 吊带A 吊带B 吊带A 吊带B
0 67.82±0.7 73.55±2.5* 55.62±0.1 57.17±1.0*
2.5 57.67±1.8 67.38±1.2* 38.80±2.7 47.87±2.7* 9.44±0.4 4.97±2.2* 1.57±0.2 0.10±0.1* 73.94±5.0 77.87±7.0
16 45.85±0.5 59.68±1.1* 14.23±2.3 43.46±1.1* 35.56±1.5 37.28±2.1 10.06±0.5 11.79±1.9 56.25±2.0 57.30±3.0

Tab.4

CCK-8 tests of L929 at 72 h (P>0.05)"

样品 OD值 相对细胞活力/%
空白对照 1.61±0.03
吊带A 1.50±0.03 93.21±0.04
吊带B 1.47±0.04 91.52±0.04
[1] ZHANG R Q, XIA M C, CUI F, et al. Epidemiological survey of adult female stress urinary incontinence[J]. BMC Women's Health, 2021,21(1):172.
doi: 10.1186/s12905-021-01319-z
[2] GOMES C M, CARVALHO F L, BELLUCCI C H S, et al. Update on complications of synthetic suburethral slings[J]. Int Braz J Urol, 2017,43(5):822-834.
doi: 10.1590/s1677-5538.ibju.2016.0250
[3] KLINGE U, BINNEBOESEL M, KUSCHEL S, et al. Demands and properties of alloplastic implants for the treatment of stress urinary incontinence[J]. Expert Review of Medical Devices, 2007,4(3):349-359.
doi: 10.1586/17434440.4.3.349
[4] WILLIAMS E R, KLUTKE C G. Stress urinary incontinence: the evolution of the sling[J]. Expert Review of Medical Devices, 2008,5(4):507-523.
doi: 10.1586/17434440.5.4.507
[5] RUSAVY Z, MASATA J, SVABIK K, et al. Are the same tapes really the same? Ultrasound study of laser-cut and mechanically cut TVT-O post-operative behavior[J]. International Urogynecology Journal, 2018,29(9):1335-1340.
doi: 10.1007/s00192-017-3516-z
[6] DIETZ H P, VANCAILLIE P, SVEHLA M, et al. Mechanical properties of urogynecologic implant materials[J]. International Urogynecology Journal, 2003,14(4):239-243.
doi: 10.1007/s00192-003-1041-8
[7] MÜHL T, BINNEBÖSEL M, KLINGE U, et al. New objective measurement to characterize the porosity of textile implants[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008,84B(1):176-183.
doi: 10.1002/(ISSN)1552-4981
[8] EDWARDS S L, WERKMEISTER J A, ROSAMILIA A, et al. Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013,23:53-61.
doi: 10.1016/j.jmbbm.2013.04.002
[9] LIN A T L, WANG S J, KUANG K C, et al. In vivo tension sustained by fascial sling in pubovaginal sling surgery for female stress urinary incontinence[J]. Journal of Urology, 2005,173(3):894-897.
doi: 10.1097/01.ju.0000153694.49749.73
[10] AFONSO J S. Estudo comparativo das propriedades fundamentais das redes de polipropileno usadas no tratamento da incontinência urinária de esforço[D]. Sao Paulo: Universidade Federal de São Paulo, 2014: 26-30.
[11] 宋晓晨. 阴道前壁膨出女性的阴道壁生物力学特性研究及三种合成网片植入兔腹壁及阴道后组织相容性及生物力学特性变化的研究[D]. 北京:中国医学科学院北京协和医学院, 2016: 20-24.
SONG Xiaochen. Biomechanical properties of prolapsed anterior vaginal tissue in anterior vaginal prolapse patients and histoligic response and changes in mechanical properties of three synthetic prolapse meshes following implanted in the abdomen and vagina of rabbits[D]. Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College, 2016: 20-24.
[12] 苗琳莉. 经缎组织疝修复平片与三维补片的结构及力学性能[D]. 上海:东华大学, 2016: 11-12.
MIAO Linli. Strucyure and mechanical property of flat and three dimensional hernia mesh with atlas structure[D]. Shanghai: Donghua University, 2016: 11-12.
[13] PRZYDACZ M, ADLI O E Y, MAHFOUZ W, et al. Structural differences and architectural features of two different polypropylene slings (TVT-O and I-STOP) have no impact on biocompatibility and tissue reactions[J]. Cent European J Urol, 2017,70(2):154-162.
[14] MOSTAFA A, AGUR W, ABDEL-ALL M, et al. A multicentre prospective randomised study of single-incision mini-sling (Ajust®) versus tension-free vaginal tape-obturator (TVT-OTM) in the management of female stress urinary incontinence: pain profile and short-term outcomes[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2012,165(1):115-121.
[15] CHAPIN K, KHALIFA A, MBIMBA T, et al. In vivo biocompatibility and time-dependent changes in mechanical properties of woven collagen meshes: A comparison to xenograft and synthetic mid-urethral sling materials[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019,107(3):479-489.
doi: 10.1002/jbm.b.v107.3
[16] 周围, 丁祖泉, 童晓文. 女性压力性尿失禁尿道下吊带术后尿道壁的力学分析[J]. 第三军医大学学报, 2009,31(19):1843-1846.
ZHOU Wei, DING Zuquan, TONG Xiaowen. Mechanical analyses on urethra wall after suburethrai slings for female pig stress urinary incontinence[J]. Acta Academiae Medicinae Militaris Tertiae, 2009,31(19):1843-1846.
[1] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[2] LI Tianhua, LI Jingjing, ZHANG Keqin, ZHAO Huijing, MENG Kai. Numerical simulation of hemodynamics in spiral artificial blood vessel [J]. Journal of Textile Research, 2022, 43(03): 17-23.
[3] WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16.
[4] LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76.
[5] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[6] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[7] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[8] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[9] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[10] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[11] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[12] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[13] LIU Muli, YUAN Li, YANG Yali, LIU Junping, GONG Xue, YAN Yuchen. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics [J]. Journal of Textile Research, 2020, 41(09): 45-53.
[14] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[15] LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!