Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 35-40.doi: 10.13475/j.fzxb.20211111206
• Fiber Materials • Previous Articles Next Articles
LOU Huiqing1,2,3(), ZHU Feichao4, LI Leilei2, DING Huilong2, PU Dandan2, WANG Xiangfei2
CLC Number:
[1] | LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017, 29(1): 1-34. |
[2] | GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25034-25042. |
[3] |
HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021, 597: 57-63.
doi: 10.1038/s41586-021-03772-0 |
[4] | LI L, HAO M, YANG X, et al. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics-ScienceDirect[J]. Nano Energy, 2020, 72:1-6. |
[5] | PAN Z, YANG J, ZHANG Q, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9):1-7. |
[6] |
LEE Y G, LEE J, AN G H. Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous superca-pacitors[J]. Advanced Functional Materials, 2021, 31(48): 2104256.
doi: 10.1002/adfm.202104256 |
[7] |
RANDENIYA L K, BENDAVID A, MARTIN P J, et al. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity[J]. Small, 2010, 6(16): 1806-1811.
doi: 10.1002/smll.201000493 pmid: 20665629 |
[8] |
XU G, ZHAO J, LI S, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers[J]. Nanoscale, 2011, 3(10): 4215-4219.
doi: 10.1039/c1nr10571j pmid: 21879118 |
[9] |
CAI Z, LI L, REN J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(2): 258-261.
doi: 10.1039/C2TA00274D |
[10] |
DONG L, LIANG G, XU C, et al. Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage[J]. Nano Energy, 2017, 34: 242-248.
doi: 10.1016/j.nanoen.2017.02.031 |
[11] |
ZHANG Z, WANG L, LI Y, et al. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor[J]. Advanced Energy Materials, 2016, 7(5): 1601814.
doi: 10.1002/aenm.201601814 |
[12] |
LIU K, CHEN Z, LV T, et al. A Self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage[J]. Nano-Micro Letters, 2020, 12:64.
doi: 10.1007/s40820-020-0390-x pmid: 34138272 |
[1] | WANG Chenlu, MA Jinxing, YANG Yaqing, HAN Xiao, HONG Jianhan, ZHAN Haihua, YANG Shiqian, YAO Shaofang, LIU Jiangqiaona. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 113-118. |
[2] | NIE Wenqi, SUN Jiangdong, XU Shuai, ZHENG Xianhong, XU Zhenzhen. Research progress in supercapacitors based on flexible textile fibers [J]. Journal of Textile Research, 2022, 43(07): 200-206. |
[3] | GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80. |
[4] | LIU Suo, WU Dingsheng, LI Man, ZHAO Lingling, FENG Quan. Preparation of spunlaced viscose/polyaniline composite fiber membrane and its adsorption performance [J]. Journal of Textile Research, 2021, 42(08): 122-127. |
[5] | YE Chengwei, WANG Yi, XU Lan. Preparation and electrochemical properties of cobalt-based hierarchical porous composite carbon materials [J]. Journal of Textile Research, 2021, 42(08): 57-63. |
[6] | ZHOU Xinru, ZHOU Xiaoya, MA Yongjian, HU Chengye, ZHAO Xiaoman, HONG Jianhan, HAN Xiao. Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam [J]. Journal of Textile Research, 2021, 42(04): 62-68. |
[7] | HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97. |
[8] | WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25. |
[9] | ZOU Lihua, XU Zhenzhen, SUN Yanyan, WANG Tairan, QIU Yiping. Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-116. |
[10] | MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104. |
[11] | . Conductivity of polyaniline / chitosan / wool composite fabrics and molecular simulation for aniline adsorption [J]. Journal of Textile Research, 2018, 39(12): 95-100. |
[12] | . Physical properties and mass preparation and application of carbon nanotube fibers [J]. Journal of Textile Research, 2018, 39(12): 145-151. |
[13] | . Continuous preparation and properties of conductive polyester/polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 20-25. |
[14] | . Electrical and mechanical properties of conductive polytrimethylene terephthalate / polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 40-46. |
[15] | . Preparation and pH-responsive behavior of polyaniline/silk fabrics [J]. Journal of Textile Research, 2016, 37(4): 91-95. |