Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 160-166.doi: 10.13475/j.fzxb.20211111307

• Apparel Engineering • Previous Articles     Next Articles

Automatic coloration of clothing pattern based on color parsing of Peking Opera masks

JIA Jing1, CAO Jingwen1, XU Pinghua1,2,3(), LIN Ruibing1, SUN Xiaowan1   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-30 Revised:2022-05-23 Online:2022-12-15 Published:2023-01-06
  • Contact: XU Pinghua E-mail:shutexph@163.com

Abstract:

In order to improve the coloration efficiency of clothing pattern design, an automatic color matching mechanism based on adaptive color clustering of scene images was proposed. 150 images of Peking Opera masks from three roles were collected as the source samples. The Peking Opera mask body of each sample image was obtained by image segmentation and denoising. The bipartite K-means clustering algorithm was utilized to extract adaptively the extracted colors of each sample. In addition, the secondary clustering was carried out to acquire the main color value, proportion and co-occurrence ratio of Peking Opera mask images. A dynamic color matching mechanism integrating the number of color clusters, co-occurrence ration and structure characteristics of the target pattern was designed. Consequently, an automatic color parsing and matching software package was developed. Results confirm that the color matching control parameters, source images, pattern shape and other factors affect the color selection sequence and the final matching effect. The proposed method can quickly achieve the pattern color migration based on the source images, and can provide reference for auxiliary decision-making on clothing pattern color design.

Key words: adaptive clustering, color transfer, Peking Opera facial mask, coloration mechanism, parsing, colthing pattern

CLC Number: 

  • TS941.2

Fig.1

Partial mask images. (a) Sheng role;(b) Jing role;(c) Chou role"

Fig.2

Pre-processing effect of single sample. (a)Graying;(b)Binaryzation;(c)Holes filling;(d)Target extraction;(e)Denoising"

Fig.3

Bipartite K-means clustering"

Fig.4

Color extraction of Chou role masks"

Fig.5

Main color nexus network model of Chou role"

Fig.6

Structure of pattern 1"

Fig.7

Automatic color matching effects of different control parameters. (a)Scheme 1;(b) Scheme 2;(c) Scheme 3;(d) Scheme 4;(e)Scheme 5;(f) Scheme 6"

Fig.8

Automatic coloration effect based on source images of different role. (a) Sheng role;(b) Jing role;(c) Chou role"

Fig.9

Mean square deviation of hue, saturation and brightness in different roles"

Tab.1

Color value and proportion of each role"

角色 输出 主色1 主色2 主色3 主色4 主色5 主色6 主色7 主色8 主色9 主色10
生角 色号 #07020C #4D220C #A77A5F #E7892E #100A11 #D893AE #48322C #722D43 #DD2C2E #715F75
占比/% 21.03 12.45 12.21 10.69 8.90 8.09 7.53 6.82 6.65 5.63
净角 色号 #05030A #3A3142 #8D89B4 #415920 #BC4E59 #E48E2F #C21316 #6A493F #DA9279 #15388D
占比/% 29.32 12.80 9.24 8.78 8.51 8.38 7.98 6.82 4.31 3.86
丑角 色号 #F1DFDA #EB9276 #0A0409 #EFC8CF #251C23 #020006 #6C4A42 #A19AB6 #080808 #8D391A
占比/% 19.96 17.47 16.88 10.76 8.45 8.05 5.82 4.75 3.96 3.90

Fig.10

Automatic color matching effect of symmetric patterns. (a)Pattern 2;(b) Pattern 3;(c) Pattern 4;(d) Pattern 5"

Fig.11

Automatic color matching effect of asymmetric patterns. (a)Pattern 6;(b) Pattern 7;(c) Pattern 8;"

[1] STEWARD D V. The design structure system: a method for managing the design of complex systems[J]. IEEE Transactions on Engineering Management, 1981, 28(3):71-74.
[2] 刘肖健, 黄红艺, 赵露唏. 基于图像大数据的中国传统织绣色谱提取研究[C]// 2016中国色彩学术年会论文集. 北京: 文化艺术出版社, 2016:51-58.
LIU Xiaojian, HUANG Hongyi, ZHAO Luxi. Research on chromatographic extraction of traditional Chinese embroidery based on image big data[C]// .2016 Chinese Color Academic Annual Conference Collection. Beijing: Culture and Art Publishing House, 2016:51-58.
[3] 刘肖健, 曹愉静, 赵露唏. 传统纹样的色彩网络模型及配色设计辅助技术[J]. 计算机集成制造系统, 2016, 22(4):899-907.
LIU Xiaojian, CAO Yujing, ZHAO Luxi. Color networks of traditional cultural patterns and color design aiding technology[J]. Computer Integrated Manufacturing Systems, 2016, 22(4): 899-907.
[4] XU B Q, LIU X J, LU C F, et al. Transferring the color imagery from an image: a color network model for assisting color combination[J]. Color Research & Application, 2019, 44(2): 205-220.
[5] 任艳博, 蒋超, 王教庆, 等. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(5):103-108.
REN Yanbo, JIANG Chao, WANG Jiaoqing, et al. Butterfly color analysis and application based on clustering algorithm and color network[J]. Journal of Textile Research, 2021, 42(5):103-108.
[6] LIU S G, ZHANG X. Automatic grayscale image colorization using histogram regression[J]. Pattern Recognition Letters, 2012, 33(13):1673-1681.
doi: 10.1016/j.patrec.2012.06.001
[7] WU M G, CHEN T S, LV GN, et al. Identification and formalization of knowledge for coloring qualitative geospatial data[J]. Color Research & Application, 2018, 43: 198-208.
[8] DONG G P, SUN S W, WU N S, et al. Research on automatic mosaic ceramic tiling method based on color matching[J]. Ceramics International, 2021, 47(22):31451-31456.
doi: 10.1016/j.ceramint.2021.08.021
[9] HE L, QI H R, ZARETZKI R. Image color transfer to evoke different emotions based on color combina-tions[J]. Signal, Image and Video Processing, 2015, 9(8):1965-1973.
doi: 10.1007/s11760-014-0691-y
[10] 王晓宇, 朱一峰, 郗金洋, 等. 基于密集连接生成对抗网络的图像颜色迁移[J]. 液晶与显示, 2020, 35(3):272-280.
WANG Xiaoyu, ZHU Yifeng, XI Jinyang, et al. Image color transfer with dense connections generative adversarial networks[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(3):272-280.
doi: 10.3788/YJYXS20203503.0272
[11] MATEJA Marić, DRAŽEN Domijan. A neurodynamic model of the interaction between color perception and color memory[J]. Neural Networks, 2020, 129:222-248.
doi: S0893-6080(20)30221-5 pmid: 32615406
[12] 朱昱宁, 徐博群, 刘肖健. 基于交互式遗传算法的参考图像辅助配色设计[J]. 包装工程, 2020, 41(2):181-188.
ZHU Yuning, XU Boqun, LIU Xiaojian. Reference image aided color matching design based on interactive genetic alg[J]. Packaging Engineering, 2020, 41(2):181-188.
[13] 吴娅昕. 京剧脸谱及其色彩结构在服装设计中的应用研究[J]. 大众文艺, 2018(20):51.
WU Yaxin. Application of Peking Opera facial mask and its color structure in fashion design[J]. Popular Literature and Art, 2018 (20):51.
[14] 赵永岐. 中国京剧脸谱[M]. 4版. 北京: 中国书店出版社, 2012:1-208.
ZHAO Yongqi. Chinese Peking Opera facial mask[M]. 4th ed. Beijing: China Bookstore Publishing House, 2012:1-208.
[15] LUO J, YANG YS, SHI BY. Multi-threshold image segmentation of 2-D otsu based on improved adaptive differential evolution algorithm[J]. Jounal of Electronics & Information Technology, 2019, 41(8):2017-2024.
[16] 徐平华, 冒海琳, 张玉杰, 等. 民族服饰色彩构成分析方法研究[J]. 丝绸, 2019, 56(3):24-29.
XU Pinghua, MAO Hailin, ZHANG Yujie, et al. Study on analysis method for color composition of ethnic costumes[J]. Journal of Silk, 2019, 56(3):24-29.
[17] 徐明慧, 徐平华, 韦秋菊, 等. 基于网络关系模型的品牌女装配色解析[J]. 纺织学报, 2021, 42(11):137-142.
XU Minghui, XU Pinghua, WEI Qiuju, et al. Color parsing of female brand clothing based on nexus network modeling[J]. Journal of Textile Research, 2021, 42(11):137-142.
doi: 10.1177/004051757204200301
[18] 庹武, 王哓玉, 高雅昆, 等. 基于改进边缘检测算法的服装款式识别[J]. 纺织学报, 2021, 42(10):157-162.
TUO Wu, WANG Xiaoyu, GAO Yakun, et al. Clothing style identification based on improved edge detection algorithm[J]. Journal of Textile Research, 2021, 42(10):157-162.
[1] YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129.
[2] . Aided design of harmony color style of bed clothes [J]. Journal of Textile Research, 2015, 36(06): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!