Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (05): 147-154.doi: 10.13475/j.fzxb.20211201201

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of nonwoven flame retardant sound-absorbing material from Hu sheep wool

TAN Qifei1, CHEN Mengying1, MA Shengsheng1,2, SUN Mingxiang1,2, DAI Chunpeng3, LUO Lunting4, CHEN Yiren1,2()   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technology Jointly Built by Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, Hubei 443100, China
    4. Yichang Yiling District Agricultural Products Quality and Safety Service Center, Yichang, Hubei 443101, China
  • Received:2021-12-07 Revised:2022-04-30 Online:2023-05-15 Published:2023-06-09

Abstract:

Objective The scale of Hu sheep breeding continues to grow, but due to the low quality of fiber, Hu sheep wool is not suitable for preparing medium and high-grade wool yarns, resulting in the low price and low industrial demand. Based on the performance and structural characteristics of Hu sheep wool, this paper explores the development of sound-absorbing material by needle punching Hu sheep wool, which represents an effort to best use natural resources.

Method Hu sheep wool sound-absorbing materials were prepared by needling, milled finishing and flame retardant finishing. The processing process involves scouring → weighing → opening → carding → lapping→ fleece formation → pre-needling → needling → rolling → milled-finishing → drying → flame retardant finishing → drying → finished product. The effects of structural parameters, milled process and flame retardant process on sound absorption performance were explored.

Results Hu sheep wool has a distinct medullary cavity, which is a loose porous structure (Fig.2). The Hu sheep wool scales are covered with craze, and the scales are wide and cocked up obviously (Fig.3). The fibers of Hu sheep wool were entangled with each other to form a three-dimensional fiber network (Figs.4-6). The fibers winding of Hu sheep wool needled fabric after milled finishing was more compact than that before milled finishing. After flame retardant finishing, the flame retardant was attached to the fiber surface of the Hu sheep wool needle fabric. When the sound wave range was in the middle and high frequency range, the sound absorption effect of the Hu sheep wool sound absorption material was good (Fig.7). The structural parameters (thickness, surface density and average pore size) of needled sound absorbing materials had influence on sound absorption performance (Tab.3). The horizontal burning performance of the Hu sheep wool needled fabric before flame retardant finishing reached the flame retardant standard requirements, but the vertical burning speed was 276 mm/min, failing meeting the standard requirements(Fig.8). After flame retardant finishing, the horizontal burning performance exceeded the standard requirements, and the vertical burning speed became 0 mm/min, meeting the standard requirements.

Conclusion Hu sheep wool has an obvious medullary layer, and the porous structure of its medullary cavity makes Hu sheep wool have good sound absorption performance. The Hu sheep wool scales are covered with craze, and the scales were very wide and cocked up obviously. This scale structure makes the Hu sheep wool have good milling power. For Hu sheep wool needled fabric, thickness and surface density are the main factors affecting its sound absorption performance. On the premise of not affecting the lightweight of the vehicle and meeting the requirements of sound absorption performance, the Hu sheep wool needled fabric with a thickness of 3.5-5 mm and a surface density of 350-450 g/m2 can be selected as the sound absorption material for the interior of the vehicle to meet the requirements of noise reduction.

Key words: Hu sheep wool, needling, milled finishing, flame retardant finishing, structural parameter, sound absorption performance, nonwoven sound-absorbing material

CLC Number: 

  • TS174.6

Tab.1

Scouring process"

洗槽 温度/℃ 时间/min 槽内试剂
一槽 50 3 清水
二槽 60 3 0.1%中性洗涤剂
0.5%元明粉
三槽 60 3 0.08%中性洗涤剂
0.4%元明粉
四槽 50 3 清水
五槽 50 3 清水

Fig.1

Preparation fiber mesh (a) and fabric(b) of Hu sheep wool nonwoven material"

Fig.2

SEM image of cross section of Hu sheep wool(× 1 500)"

Fig.3

SEM images of scale structure of Hu sheep wool at different magnifications"

Fig.4

SEM images of Hu sheep wool nonwoven materials by different finishing processes. (a) Untreated; (b) Milled finishing; (c)Flame-retardant treatment"

Tab.2

Structural parameters of Hu sheep wool nonwoven material"

样品 厚度/mm 平均孔径/μm 面密度/(g·m-2)
样品1 0.72 284.80 83.64
样品2 3.22 220.30 293.12
样品3 4.55 179.70 399.37
样品4 4.58 176.80 407.76

Fig.5

Sound absorption coefficients of Hu sheep wool unwoven fabrics with different structural parameters"

Tab.3

Structural parameters and sound absorption coefficients of Hu sheep wool nonwoven materials"

序号 厚度/
mm
平均孔径/
μm
面密度/
(g·m-2)
吸声系数/
%
序号 厚度/
mm
平均孔径/
μm
面密度/
(g·m-2)
吸声系数/
%
1 0.72 284.8 83.64 26.0 16 3.86 160.2 351.52 51.4
2 3.22 220.3 293.12 44.4 17 3.54 198.6 279.39 49.6
3 4.55 179.7 407.76 60.0 18 1.98 270.8 155.98 32.2
4 4.58 176.8 399.37 61.9 19 1.62 203.4 158.38 37.2
5 1.61 222.5 133.29 32.3 20 3.08 244.4 253.06 51.1
6 0.75 257.7 77.51 25.7 21 2.39 277.0 192.64 39.7
7 2.63 203.9 214.38 40.6 22 4.01 180.4 384.28 56.8
8 2.36 221.5 199.95 40.7 23 4.85 172.6 447.03 63.4
9 2.81 215.2 221.53 42.8 24 4.72 189.7 435.25 62.9
10 2.89 221.9 228.59 45.0 25 4.34 185.7 341.19 50.7
11 2.56 227.2 226.85 37.9 26 6.03 204.3 689.85 83.5
12 3.41 207.8 304.47 47.9 27 1.16 264.2 96.74 26.6
13 3.97 214.1 399.37 52.1 28 2.10 241.1 136.84 34.4
14 5.93 155.1 687.30 80.6 29 5.07 175.3 471.14 77.7
15 2.95 237.7 242.72 43.1 30 3.97 237.0 268.94 53.2

Tab.4

Structural parameters of Hu sheep wool nonwoven materials before and after milled finishing"

样品 类别 厚度/mm 面密度/(g·m-2) 平均孔径/μm
样品1# 未缩绒 4.74 264.49 194.20
缩绒后 5.20 300.46 186.30
样品2# 未缩绒 6.36 429.89 178.40
缩绒后 7.71 643.46 176.00
样品3# 未缩绒 5.94 288.80 211.80
缩绒后 5.04 312.84 206.40

Fig.6

Sound absorption coefficients of Hu sheep wool nonwoven materials before and after milled finishing. (a)Sample 1#; (b)Sample 2#; (c)Sample 3#"

Fig.7

Flame retardance diagrams of Hu sheep wool nonwoven material (horizontal method). (a)Before flame retardant finishing; (b)After flame retardant finishing"

Fig.8

Flame retardance diagrams of Hu sheep wool nonwoven materials (vertical method). (a)Before flame retardent finishing; (b)After flame retardant finishing"

[1] 李玉峰, 李江涛, 殷雨洋, 等. 湖州湖羊产业发展现状及对策[J]. 养殖与饲料, 2017(11):98-99.
LI Yufeng, LI Jiangtao, YIN Yuyang, et al. Development status and countermeasures of Huyang sheep industry in Huzhou[J]. Animals Breeding and Feed, 2017(11): 98-99.
[2] 王超丽, 刘强, 付云宝, 等. 南疆墨玉县地区提高湖羊羔羊成活率的综合措施[J]. 养殖与饲料, 2020(5):48-50.
WANG Chaoli, LIU Qiang, FU Yunbao, et al. Comprehensive measures to improve the survival rate of Hu lamb in Moyu county, southern Xinjiang[J]. Animals Breeding and Feed, 2020 (5): 48-50.
[3] 刘会敏, 陈家振. 湖羊“地位”及“后时代”应对策略[J]. 现代畜牧科技, 2021(11):35-37.
LIU Huimin, CHEN Jiazhen. Huyang ″status″ and ″postage″ coping strategies[J]. Modern Animal Husbandry Science & Technology, 2021(11):35-37.
[4] 马芳武, 王海林, 刘强. 汽车车内噪声控制技术[J]. 汽车技术, 2009(12):47-50,53.
MA Fangwu, WANG Hailin, LIU Qiang. NVH technology for controlling automotive interior noise[J]. Automotive Technology, 2009(12): 47-50,53.
[5] 李奕慈. 微型车车身结构对车内低频噪声的影响规律研究[D]. 武汉: 武汉理工大学, 2018:19-21.
LI Yici. Influence law of minivan body structure onlow frequency interior noise[D]. Wuhan: Wuhan University of Technology, 2018:19-21.
[6] 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用[M]. 北京: 科学出版社, 2006:116-119.
HE Lin, ZHU Haichao, QIU Xiaojun, et al. Acoustic theory and engineering application[M]. Beijing: Science Press, 2006:116-119.
[7] 丁雷. 声频工程中共振吸声材料特性及应用[J]. 电声技术, 2019, 43(5):12-18.
DING Lei. Characteristics and application of resonance sound-absorbing materials in audio engineering[J]. Electroacoustic Technology, 2019, 43 (5): 12-18.
[8] 张亚虎, 任伟. 共振吸声体降噪研究与应用[J]. 制冷技术, 2015, 35(4):43-46.
ZHANG Yahu, REN Wei. Research and application of noise reduction by resonance absorber[J]. Refrigeration Technology, 2015, 35 (4): 43-46.
[9] 王冰, 张荣波, 邹汉涛. 聚丙烯/亚麻针刺无纺布及其复合材料性能的研究[J]. 武汉纺织大学学报, 2017, 30(3):8-11.
WANG Bing, ZHANG Rongbo, ZOU Hantao. Study on the properties of polypropylene/linen needle-punched non-woven fabrics and their composite materials[J]. Journal of Wuhan Textile University, 2017, 30(3):8-11.
[10] THILAGAVATHI G, PRADEEP E, KANNAIAN T, et al. Development of natural fiber nonwovens for application as car interiors for noise control[J]. Journal of Industrial Textiles, 2010, 39(3):267-278.
doi: 10.1177/1528083709347124
[11] TIUC AE, NEMES O, VERMESAN H, et al. Innovative use of sheep wool for obtaining materials with improved sound-absorbing properties[J]. Materials, 2020, 13(3): 694.
doi: 10.3390/ma13030694
[12] 李长伟, 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10):74-80.
LI Changwei, LÜ Lihua. Preparation and properties of sound absorption composites based on waste wool[J]. Journal of Textile Research, 2018, 39 (10): 74-80.
[13] 成钢. 羊毛吸声绝热制品的性能及应用[J]. 新型建筑材料, 2009, 36(5):63-66.
CHENG Gang. Performance and application of wool sound absorption and thermal insulation product[J]. New Building Materials, 2009, 36 (5): 63-66.
[14] 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(3):67-71.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017, 38 (3): 67-71.
[15] QIU Hua, YANG Enhui. Effect of thickness, density and cavity depth on the sound absorption properties of wool boards[J]. AUTEX Research Journal, 2018, 18(2): 203-208.
doi: 10.1515/aut-2017-0020
[16] 张辉, 谢光银, 范立红, 等. 洗涤缩绒对羊毛织物透气、光泽和吸声性能的影响[J]. 毛纺科技, 2008(7):53-55.
ZHANG Hui, XIE Guangyin, FAN Lihong, et al. Study on the properties of air permeability, luster and sound absorption of milling wool fabric by washing[J]. Wool Textile Journal, 2008 (7): 53-55.
[17] 李丽君, 罗佳妮, 唐雨蓉, 等. 废弃混杂湖羊毛/低熔点纤维针刺非织造布的制备及性能研究[J]. 产业用纺织品, 2020, 38(10):19-26.
LI Lijun, LUO Jiani, TANG Yurong, et al. Study on preparation and properties of waste mixed lake wool/ low melting point fiber needled nonwoven[J]. Technical Textiles, 2020, 38 (10): 19-26.
[18] 王双闪. 针刺非织造材料基复合吸声体吸声性能研究[D]. 苏州: 苏州大学, 2014:12-13.
WANG Shuangshan. Study the absorption properties of non-woven material matrix composite absorber[D]. Suzhou: Soochow University, 2014:12-13.
[19] 席莺, 李旭祥, 方志刚, 等. 聚氯乙烯基混合吸声材料的研究[J]. 高分子材料科学与工程, 2001, 17(2):129-132.
XI Ying, LI Xuxiang, FANG Zhigang, et al. Research on foamed pvc-compound sound absorbing material[J]. Polymer Materials Science and Engineering, 2001, 17(2): 129-132.
[20] 刘鹏辉, 杨宜谦, 姚京川. 多孔吸声材料的吸声特性研究[J]. 噪声与振动控制, 2011, 31(2):123-126.
doi: 10.3969/j.issn.1006-1355-2011.02.029
LIU Penghui, YANG Yiqian, YAO Jingchuan. Study on absorption property of porous sound-absorbing mate-rial[J]. Noise And Vibration Control, 2011, 31(2): 123-126.
doi: 10.3969/j.issn.1006-1355-2011.02.029
[21] 栾巧丽, 邱华, 成钢, 等. 废旧羊毛非织造布的制备及其吸声性能[J]. 纺织学报, 2016, 37(7):77-81.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Preparation of waste wool nonwovens and their sound absorption properties[J]. Journal of Textile Research, 2016, 37(7):77-81.
[22] JYOTIRMOY Das, DATTA Roy M. A study of sound absorption properties of jute felt mattress[J]. Journal of The Institution of Engineers (India): Series E, 2021, 102(2):369-375.
doi: 10.1007/s40034-021-00229-x
[1] CHEN Xiaoming, REN Zhipeng, ZHENG Hongwei, WU Kaijie, SU Xingzhao, CHEN Li. A method for improving mechanical properties of needled fabrics based on synergy of pre-needling and main needling [J]. Journal of Textile Research, 2023, 44(04): 100-107.
[2] LÜ Lihua, LI Zhen. Structural characteristics and sound absorption performance of waste corn straw [J]. Journal of Textile Research, 2022, 43(12): 42-47.
[3] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[4] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[5] WANG Chunru, YUAN Yue, CAO Xiaomeng, FAN Yilin, ZHONG Anhua. Influence of structural parameters of stand collar on clothing styling [J]. Journal of Textile Research, 2022, 43(03): 153-159.
[6] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[7] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[8] LIU Shuping, LI Liang, LIU Rangtong, HU Zedong, GENG Changjun. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. Journal of Textile Research, 2021, 42(10): 107-114.
[9] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[10] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[11] LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan. One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics [J]. Journal of Textile Research, 2021, 42(04): 8-15.
[12] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[13] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[14] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[15] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!