Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (06): 152-160.doi: 10.13475/j.fzxb.20211201501
• Dyeing and Finshing & Chemicals • Previous Articles Next Articles
ZHU Xiaorong1,2, XIANG Youhui1,2, HE Jiazhen1,2(), ZHAI Li'na3
CLC Number:
[1] |
MONDAL S. Thermo-regulating textiles with phase-change materials[J]. Functional Textiles for Improved Performance, Protection and Health, 2011. DOI:10.1533/9780857092878.163.
doi: 10.1533/9780857092878.163 |
[2] |
BRUNO J S, VIGO T L. Thermal properties of insolubilized polyacetals derived from non-formaldehyde crosslinking agents[J]. Thermochimica Acta, 1994, 243(2): 155-159.
doi: 10.1016/0040-6031(94)85050-X |
[3] |
PHELPS H, SIDHU H. A mathematical model for heat transfer in fire fighting suits containing phase change materials[J]. Fire Safety Journal, 2015, 74:43-47.
doi: 10.1016/j.firesaf.2015.04.007 |
[4] |
GAO C, KUKLANE K, INGVAR HOLMÉR. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6):1207-1216.
doi: 10.1007/s00421-010-1748-4 pmid: 21127896 |
[5] | 赵蒙蒙. 可调温织物与服装吸热效应评价研究[D]. 上海: 东华大学, 2013:33-63. |
ZHAO Mengmeng. Study on the heat absorption effect of fabrics and clothing technologies with thermal regulatory features[D]. Shanghai: Donghua University, 2013:33-63. | |
[6] | ZHANG H, SONG G W, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire & Materials, 2017, 41(8):953-963. |
[7] |
MCCARTHY L K, MARZO M. The application of phase change material in fire fighter protective clothing[J]. Fire Technology, 2012, 48(4): 841-864.
doi: 10.1007/s10694-011-0248-3 |
[8] | MERCER G N, SIDHU H S. Mathematical modelling of the effect of fire exposure on a new type of protective clothing[J]. Australian & New Zealand Industrial & Applied Mathematics Journal, 2008, 49:289-305. |
[9] |
HU Y, HUANG D M, QI Z K, et al. Modeling thermal insulation of firefighting protective clothing embedded with phase change material[J]. Heat and Mass Transfer, 2013, 49:567-573.
doi: 10.1007/s00231-012-1103-x |
[10] | 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014, 35(8):124-132. |
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014, 35(8):124-132.
doi: 10.1177/004051756503500205 |
|
[11] |
SONG G W. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943 |
[12] |
SHALEV I, BARKER R L. Protective fabrics: a comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures[J]. Textile Research Journal, 1984, 54(10): 648-654.
doi: 10.1177/004051758405401003 |
[13] |
LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12): 1235-1243.
doi: 10.1177/0040517512436830 |
[14] |
LU Y H, SONG G W, LI J. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6): 1439-1446.
doi: 10.1016/j.apergo.2014.04.007 pmid: 24793820 |
[15] |
PHELPS H L, WATT S D, SIDHU H S, et al. Using phase change materials and air gaps in designing fire fighting suits: a mathematical investigation[J]. Fire Technology, 2019, 55(1): 363-381.
doi: 10.1007/s10694-018-0794-z |
[16] |
BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3): 549-563.
doi: 10.1007/s10694-010-0151-3 |
[17] | SONG G W, BARKER R L. Analyzing thermal stored energy and clothing thermal protective performance[C]//Proceedings of 4th International Conference on Safety & Protective Fabrics. Pittsburgh PA: Industrial Fabrics Association International, 2004: 26-27. |
[18] | SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020. 101016/j. applthermal.eng.2020.115340. |
[19] | GHAZY A, BERGSTORM D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010, 58(9): 702-724. |
[20] |
SONG G W. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2010, 81(3): 311-323.
doi: 10.1177/0040517510380108 |
[21] | 邓梦, 王云仪. 低辐射热暴露下消防服热防护性能测评方法研究进展[J]. 纺织学报, 2017, 38(12): 162-168, 176. |
DENG Meng, WANG Yunyi. Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation[J]. Journal of Textile Research, 2017, 38(12): 162-168,176. | |
[22] | 朱方龙. 服装的热防护功能[M]. 北京: 中国纺织出版社, 2015:181-186. |
ZHU Fanglong. Thermal protection function of cloth-ing[M]. Beijing: China Textile & Apparel Press, 2015:181-186. | |
[23] | 朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4):635-643. |
ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. Journal of Basic Science and Engineering, 2011, 19(4):635-643. | |
[24] | 李正雄. 浅谈织物涂层剂[J]. 印染助剂, 2003, 20(1): 7-10. |
LI Zhengxiong. An overview of textile coating agents[J]. Textile Auxiliaries, 2003, 20(1): 7-10. | |
[25] | 陈云博, 朱翔宇, 李祥, 等. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(1): 167-174. |
CHEN Yunbo, ZHU Xiangyu, LI Xiang, et al. Recent advance in preparation of thermo-regulating textiles based on phase change materials[J]. Journal of Textile Research, 2021, 42(1): 167-174.
doi: 10.1177/004051757204200307 |
|
[26] | 付明, 翁文国, 袁宏永. 低热辐射强度下防护服热防护性能的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(6):719-723. |
FU Ming, WENG Wenguo, YUANG Hongyong. Bench scale test of the thermal protective performance of protective clothing for low intensity thermal radia-tion[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6):719-723. | |
[27] |
HE J Z, LU Y H, CHEN S, et al. On dual performance of protective clothing composites with different air gaps under hot steam exposure[J]. Case Studies in Thermal Engineering, 2021.DOI:10.1016/j.csite.201.101128.
doi: 10.1016/j.csite.201.101128 |
[28] | VETTORI R L, TWILLEY W H, STROUP D W. Measurement techniques for low heat flux exposures to fire fighters protective clothing[M]. Gaithersburg:US Department of Commerce, National Institute of Standards and Technology, 2001:4-52. |
[29] | HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595. |
[30] |
HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017, 338: 76-84.
doi: S0304-3894(17)30355-2 pmid: 28531661 |
[31] |
SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000, 70(7):567-573.
doi: 10.1177/004051750007000702 |
[32] |
FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9): 968-978.
doi: 10.1177/0040517513512403 |
[33] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010, 31(12): 103-107. | |
[34] | ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005:1-53. |
[35] | BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Personal Protection Technology Laboratory, 2005:8-13. |
[36] |
TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361 |
[1] | CHEN Zhijie, JIANG Jikang, YU Yihao, FU Ye, WU Jindan, QI Dongming. Synthesis of silicon phosphorus modified calcium carbonate and its application in polyamide coating [J]. Journal of Textile Research, 2023, 44(04): 146-153. |
[2] | ZHANG Shaoyue, YUE Jiangyu, YANG Jiale, CHAI Xiaoshuai, FENG Zengguo, ZHANG Aiying. Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes [J]. Journal of Textile Research, 2023, 44(03): 11-18. |
[3] | ZHU Xiaorong, HE Jiazhen, XIANG Youhui, WANG Min. Research progress in dual performance in heat-storage protection and heat-release hazard of thermal protective clothing [J]. Journal of Textile Research, 2023, 44(01): 228-237. |
[4] | DAI Lu, HU Zexu, WANG Yan, ZHOU Zhe, ZHANG Fan, ZHU Meifang. Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers [J]. Journal of Textile Research, 2023, 44(01): 71-78. |
[5] | ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling. Research progress in aerogel materials application for textiles [J]. Journal of Textile Research, 2022, 43(12): 181-189. |
[6] | GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196. |
[7] | ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202. |
[8] | JIANG Lulu, DENG Meng, WANG Yunyi, LI Jun. Research progress on application of aerogel materials in firefighting clothing [J]. Journal of Textile Research, 2021, 42(09): 187-194. |
[9] | DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135. |
[10] | CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174. |
[11] | LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134. |
[12] | ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129. |
[13] | HOU Yuying, LI Xiaohui. Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing [J]. Journal of Textile Research, 2019, 40(12): 109-113. |
[14] | DU Feifei, LI Xiaohui, ZHANG Siyan. Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing [J]. Journal of Textile Research, 2019, 40(03): 133-138. |
[15] | . Comprehensive evaluation of thermal protection and comfort of outer fabrics of firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 100-104. |
|