Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 1-9.doi: 10.13475/j.fzxb.20211203809

• Invited Paper •     Next Articles

Research progress on flame-retardation and multi-functionalization of textiles

XU Yingjun1, WANG Fang2, NI Yanpeng1, CHEN Lin3, SONG Fei3, WANG Yuzhong3()   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610064, China
    3. College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
  • Received:2021-12-16 Revised:2022-01-07 Online:2022-02-15 Published:2022-03-15
  • Contact: WANG Yuzhong E-mail:yzwang@scu.edu.cn

Abstract:

Most textiles are highly flammable and often bring fire hazards. It is thus of great significance for improving flame retardancy of fabrics. Differentiation and functionalization of fabrics have become the mainstreams in both academic and industrial communities. However, flame-retardant multifunctional fabrics with well-balanced performance (e.g., softness, air permeability, comfort, and drape) have been rarely reported. Designing of functional monomers and additives with coordinated functions and then incorporating them into the fabric system via efficient technologies can be the keys to obtaining flame-retardant multifunctional fabrics. This paper presents work focusing on flame-retardant multifunctional fabrics. Some approaches towards coordination and cooperation among the multiple functions of the fabrics were discussed, and intrinsically flame-retardant and anti-dripping multifunctional polyester were introduced. Flame-retardant antibacterial, anti-corrosion, and water/oil-proof cotton and viscose fabrics, and polyester/cotton blend fabrics via surface treatments were highlighted. In addition, a brief prospect on the opportunities and challenges of the fields was provided, aiming for guiding the development of high-quality flame-retardant multifunctional fabrics.

Key words: fabric, flame retardant, multifunction, intrinsically flame-retardant and anti-dripping multifunctional polyester, surface treatment technology

CLC Number: 

  • TS195

Fig.1

PEPN-containing copolyester P(ET-co-PN)n and its performance tests. (a) Preparation of PEPN-containing copolyester P(ET-co-PN)n; (b) Photos of PET and P(ET-co-PN)15 during UL-94 test; (c) Photos of thermal activated shape recovery of P(ET-co-PN)15; (d) Illustration of self-healing process of P(ET-co-PN)15"

Fig.2

Overview of some flame-retardant sol-gel systems reported by our group"

Fig.3

Schematic diagram for fabrication of flame-retardant coating and interaction between coating components"

Tab.1

Testing results of coated composite fabrics according to GB 19082—2009 test methods"

检测项目名称 国标要求 改性复合布
检测结果 单项判定
断裂强力/N ≥45 纵向925
横向327
符合
断裂伸长率/% ≥15 纵向91
横向219
符合
表面抗湿性/级 ≥3 3 符合
抗渗水性/kPa ≥1.67 >20.0 符合
过滤效率/% ≥70 最小值99 符合
抗合成血液穿透性/级 ≥2 6 符合
透湿率/(g·m-2·d-1) ≥2 500 4 130 符合
静电衰减性能/s ≤0.5 最大值0.05 符合

Fig.4

Performance tests of flame-retardant and superamphiphobic surface. (a) Schematic of flame-retardant and superamphiphobic coating; (b) SEM images of uncoated and coated substrates of cotton fabric, and ramie as well as corresponding digital photographs showing surface wettability of different liquids on uncoated (i) and coated (ii) substrates; (c) Photographs of coated cotton fabrics before and after VFT; (d) Digital photographs of water, glycerol, edible oil, paraffin oil, diesel oil and hexadecane droplets sliding on coated cotton fabric; (e) Illustration of protection performance of uncoated and coated cotton gloves against concentrated H2SO4(98%) for artificial hands"

[1] 王玉忠. 聚酯纤维阻燃化设计 [M]. 成都: 四川科学技术出版社, 1994.
WANG Yuzhong. Flame-retardation design of PET fibers [M]. Chengdu: Sichuan Science and Technology Press, 1994.
[2] LIU B W, ZHAO H B, WANG Y Z. Advanced flame-retardant methods for polymeric materials[J]. Adv Mater. DOI: 10.1002/adma.2107905.
doi: 10.1002/adma.2107905
[3] WANG D Y, LIU X Q, WANG J S, et al. Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite[J]. Polym Degrad Stabil, 2009, 94(4): 544-549.
doi: 10.1016/j.polymdegradstab.2009.01.018
[4] QU M H, WANG Y Z, LIU Y, et al. Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites[J]. J Appl Polym Sci, 2006, 102(1): 564-570.
doi: 10.1002/(ISSN)1097-4628
[5] GE X G, WANG D Y, WANG C, et al. A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy[J]. Eur Polym J, 2007, 43(7): 2882-2890.
doi: 10.1016/j.eurpolymj.2007.03.040
[6] ZHAO H B, WANG Y Z. Design and synjournal of pet-based copolyesters with flame-retardant and antidripping performance[J]. Macromol Rapid Comm, 2017, 38(23): 1700451.
doi: 10.1002/marc.v38.23
[7] 陈琳, 刘博文, 付腾, 等. 聚酯抗熔滴阻燃新方法[J]. 科学通报, 2020, 65(28/29): 3160-3172.
CHEN Lin, LIU Bowen, FU Teng, et al. New methods for flame-retarding PET without melt dripping[J]. Chinese Sci Bull, 2020, 65(28/29): 3160-3172.
doi: 10.1360/TB-2020-0911
[8] CHEN L, ZHAO H B, NI Y P, et al. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking[J]. J Mater Chem A, 2019, 7(28): 17037-17045.
doi: 10.1039/C9TA04187G
[9] ZHANG Y, CHEN L, ZHAO J J, et al. A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping[J]. Polym Chem, 2014, 5(6): 1982-1991.
doi: 10.1039/C3PY01030A
[10] ZHANG Y, NI Y P, HE M X, et al. Phosphorus-containing copolyesters: The effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances[J]. Polymer, 2015, 60:50-61.
doi: 10.1016/j.polymer.2015.01.030
[11] WU W S, NI Y P, CHEN L, et al. Trinity effect of potassium sulfonate-benzimidozale towards self-intumescent flame-retarded polyester with low fire hazards[J]. Chem Eng J, 2022, 429:132121.
doi: 10.1016/j.cej.2021.132121
[12] WU W S, DUAN P H, WANG Y L, et al. High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure[J]. Sci China Mater, 2021: 1-14.
[13] ZHANG C, JIANG Z, ZHU S, et al. Eco-friendly and efficient flame-retardant cotton fabric based on a multi-hydroxyl hyperbranched phosphoramidate[J]. Cellulose, 2021, 28(3): 1857-1872.
doi: 10.1007/s10570-020-03645-1
[14] 张超, 蒋之铭, 朱少彤, 等. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(7): 39-45.
ZHANG Chao, JIANG Zhiming, ZHU Shaotong, et al. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics[J]. J Text Res, 2021, 42(7): 39-45.
[15] ZHANG J, CHEN B, LIU J, et al. Multifunctional antimicrobial and flame retardant cotton fabrics modified with a novel N, N-di (ethyl phosphate) biguanide[J]. Cellulose, 2020, 27(12): 7255-7269.
doi: 10.1007/s10570-020-03256-w
[16] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020, 27(6): 3531-3549.
doi: 10.1007/s10570-020-03016-w
[17] DONG C, SUN L, MA X, et al. Synjournal of a novel linear α, ω-di (chloro phosphoramide) polydimethylsiloxane and its applications in improving flame-retardant and water-repellent properties of cotton fabrics[J]. Polymers, 2019, 11(11): 1829.
doi: 10.3390/polym11111829
[18] ZHANG J, WANG H, SUN L, et al. A novel polydimethylsiloxane comb-shaped copolymer containing P-N elements toward cotton fabrics: flame retardancy and antibacterial property[J]. Cellulose, 2021, 28(18): 11595-11608.
doi: 10.1007/s10570-021-04235-5
[19] 张姣姣, 李雨洋, 刘云, 等. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(7): 31-38.
ZHANG Jiaojiao, LI Yuyang, LIU Yun, et al. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics[J]. J Text Res, 2021, 42(7): 31-38.
[20] WANG S, LIU J, SUN L, et al. Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism[J]. Cellulose, 2020, 27(17): 10425-10440.
doi: 10.1007/s10570-020-03469-z
[21] XU D, WANG S, HU J, et al. Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine[J]. Cellulose, 2021, 28(5): 3265-3277.
doi: 10.1007/s10570-021-03716-x
[22] RICHARDSON J J, CUI J, BJORNMALM M, et al. Innovation in layer-by-layer assembly[J]. Chem Rev, 2016, 116(23): 14828-14867.
doi: 10.1021/acs.chemrev.6b00627
[23] QIU X, LI Z, LI X, et al. Flame retardant coatings prepared using layer by layer assembly: a review[J]. Chem Eng J, 2018, 334:108-122.
doi: 10.1016/j.cej.2017.09.194
[24] LI Y C, SCHULZ J, GRUNLAN J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability[J]. ACS Appl Mater Interfaces, 2009, 1(10): 2338-2347.
doi: 10.1021/am900484q
[25] YANG J C, LIAO W, DENG S B, et al. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly[J]. Carbohyd Polym, 2016, 151:434-440.
doi: 10.1016/j.carbpol.2016.05.087
[26] WANG B, XU Y J, LI P, et al. Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly[J]. Appl Surf Sci, 2020, 509:145323.
doi: 10.1016/j.apsusc.2020.145323
[27] LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohyd Polym, 2020, 237:116173.
doi: 10.1016/j.carbpol.2020.116173
[28] LI P, LIU C, WANG B, et al. Eco-friendly coating based on an intumescent flame-retardant system for viscose fabrics with multi-function properties: flame retardancy, smoke suppression, and antibacterial properties[J]. Prog Org Coat, 2021, 159:106400.
[29] LI P, LIU C, XU Y J, et al. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LBL: flame retardancy, smoke suppression and flame-retardant mechanism[J]. Polym Degrad Stabil, 2020, 181:109302.
doi: 10.1016/j.polymdegradstab.2020.109302
[30] LI Z F, ZHANG C J, CUI L, et al. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly[J]. J Anal Appl Pyrol, 2017, 123:216-223.
doi: 10.1016/j.jaap.2016.11.026
[31] CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chem Rev, 2013, 113(8): 6592-6620.
doi: 10.1021/cr300399c
[32] MALUCELLI G, CAROSIO F, ALONGI J, et al. Materials engineering for surface-confined flame retardancy[J]. Mater Sci Eng R, 2014, 84:1-20.
doi: 10.1016/j.mser.2014.08.001
[33] ALONGI J, MALUCELLI G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles[J]. J Mater Chem, 2012, 22(41): 21805-21809.
doi: 10.1039/C2JM32513F
[34] KUNDU C K, WANG X, HOU Y, et al. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane[J]. Carbohyd Polym, 2018, 181:833-840.
doi: 10.1016/j.carbpol.2017.11.069
[35] JIANG Z, LI H, HE Y, et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane[J]. Appl Surf Sci, 2019, 479:765-775.
doi: 10.1016/j.apsusc.2019.02.159
[36] LIU J, DONG C, ZHANG Z, et al. Durable flame retardant cotton fabrics modified with a novel silicon-phosphorus-nitrogen synergistic flame retardant[J]. Cellulose, 2020, 27(15): 9027-9043.
doi: 10.1007/s10570-020-03370-9
[37] LIU Y, PAN Y T, WANG X, et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synjournal, characterization and flammability[J]. Chem Eng J, 2016, 294:167-175.
doi: 10.1016/j.cej.2016.02.080
[38] XU D, GAO Z, XU B, et al. A facile and effective flame-retardant coating for cotton fabric with α-aminodiphosphonate siloxane[J]. Polym Degrad Stabil, 2020, 180:109312.
doi: 10.1016/j.polymdegradstab.2020.109312
[39] JIANG Z, XU D, MA X, et al. Facile synjournal of novel reactive phosphoramidate siloxane and application to flame retardant cellulose fabrics[J]. Cellulose, 2019, 26(9): 5783-5796.
doi: 10.1007/s10570-019-02465-2
[40] WANG S, XU D, LIU Y, et al. Preparation and mechanism of phosphoramidate-based sol-gel coating for flame-retardant viscose fabric[J]. Polym Degrad Stabil, 2021, 190:109620.
doi: 10.1016/j.polymdegradstab.2021.109620
[41] ZHU Z M, XU Y J, LIAO W, et al. Highly flame retardant expanded polystyrene foams from phosphorus-nitrogen-silicon synergistic adhesives[J]. Ind Eng Chem Res, 2017, 56(16): 4649-4658.
doi: 10.1021/acs.iecr.6b05065
[42] LI P, WANG B, XU Y J, et al. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism[J]. ACS Sustain Chem Eng, 2019, 7(23): 19246-19256.
doi: 10.1021/acssuschemeng.9b05523
[43] TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Prog Org Coat, 2021, 150:105971.
[44] WANG Q Z, LIU C, XU Y J, et al. Highly efficient flame retardation of polyester fabrics via novel DOPO-modified sol-gel coatings[J]. Polymer, 2021, 226:123761.
doi: 10.1016/j.polymer.2021.123761
[45] ZHANG A N, ZHAO H B, CHENG J B, et al. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics[J]. Chem Eng J, 2021, 410:128361.
doi: 10.1016/j.cej.2020.128361
[46] WANG F, LI J Y, PI J, et al. Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness[J]. Chem Eng J, 2021, 421:127793.
doi: 10.1016/j.cej.2020.127793
[1] SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution [J]. Journal of Textile Research, 2022, 43(02): 140-148.
[2] JIN Wenjie, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Sulfanilamide finishing to polyamide 6 fabrics for flame retardant and anti-dripping performance [J]. Journal of Textile Research, 2022, 43(02): 171-175.
[3] XIE Ailing, YUE Yuhan, AI Xin, WANG Yahui, WANG Yirong, CHEN Xinpeng, CHEN Guoqiang, XING Tieling. Preparation of superhydrophobic polyester fabric modified by tea polyphenols for oil-water separation [J]. Journal of Textile Research, 2022, 43(02): 162-170.
[4] LIU Hanbang, LI Xinrong, FENG Wenqian, WU Liubo, YUAN Ruwang. Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics [J]. Journal of Textile Research, 2022, 43(02): 208-213.
[5] MA Yiping, FAN Wuhou, WU Jinchuan, PU Zongyao. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents [J]. Journal of Textile Research, 2022, 43(02): 183-188.
[6] YANG Tengxiang, SHEN Guodong, QIAN Lijiang, HU Huajun, MAO Xue, SUN Runjun. External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties [J]. Journal of Textile Research, 2022, 43(02): 189-195.
[7] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[8] DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[9] FANG Yinchun, SUN Weihao. Research progress in flame retardant cellulose aerogel [J]. Journal of Textile Research, 2022, 43(01): 43-48.
[10] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[11] WANG Bowen, LIN Senming, YUE Xiaoli, ZHONG Yi, CHEN Huimin. Evaluation of atomization quality on fabric spray sizing [J]. Journal of Textile Research, 2021, 42(12): 90-96.
[12] HUANG Hongbo, HAN Zongbao, GUO Heng, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Influence of thermal and moist treatments on shape retention performance of anti-creasing wool fabrics [J]. Journal of Textile Research, 2021, 42(12): 119-124.
[13] ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118.
[14] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[15] XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[2] ZHANG Jin-qiu;ZHANG Hua;HAO Xin-min;JIANG Feng-qin. Relationship between high temperature scouring time and degumming quality of hemp fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 81 -83 .
[3] CHEN Weiguo;DAI Jinjin;WANG Junsu;JIA Chengtong;WANG Zhiyong;MENG Zhaocheng. Thermosol dyeing of polyester fabrics with high light fastness vat dyes[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 82 -86 .
[4] LI Zhong . Biarc application in the garment pattern design[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 101 -102 .
[5] CUI Yi-hua. Primary properties of basalt continuous filament[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 120 -121 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(05): 59 -60 .
[7] ZHOU Jiu;Frankie Ng. Innovative principle and method of design of colorful digital jacquard fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(5): 6 -9 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1990, 11(12): 32 -34 .
[9] LI Lijun;PU Zongyao;LI Feng;WANG Hua;LAN Bin. Thermal degradation kinetics of polyphenylene sulfide fibers[J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 4 -8 .
[10] JIAO Ya-nan;LI Jia-lu. Tensile properties of 3-D braided composites with profiled piece[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(9): 1 -4 .