Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 7-11.doi: 10.13475/j.fzxb.20211206706

• Invited Column: Expert Opinion of the 11th China Textile Academic Conferenc • Previous Articles     Next Articles

Research progress in key technologies of spun yarn warp knitting production

JIANG Gaoming(), CHENG Bilian, WAN Ailan, LI Bingxian   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-12-31 Revised:2022-02-21 Online:2022-05-15 Published:2022-05-30

Abstract:

In view of the problems of low strength, high hairiness, small elongation, high twist and high cost in warp knitting production using spun fiber yarns, the warping technology, high-speed production technology, clean production technology, intelligent production and fully formed warp knitting production technology in the production of spun yarn warp knitting were summarized in this paper. By summarizing the yarn quality requirements of spun yarn for warp knitting, including yarn breaking strength, surface hairiness and elongation properties, the problems and solutions of spun yarn warp knitting technology were further analyzed. Through introducing the application status and production situation of spun yarn warp knitted products in the fields of shirt fabrics, underwear fabrics, trousers and lace fabrics, the future development direction of spun yarn warp knitted technology was prospected, pointing out that the production technology of spun yarn warp knitting is gradually going towards specialization, high quality and functionality.

Key words: spun yarn, warp knitting, warping, knitting technology, underwear fabric

CLC Number: 

  • TS186.1

Fig.1

Spun yarn warp warping machine"

Fig.2

Schematic diagram of blowing and suction system of spun yarn intelligent high-speed warp knitting machine"

Fig.3

Intelligent high-speed warp knitting machine for spun yarn"

Fig.4

Houndstooth warp knitted trousers"

[1] 蒋高明. 经编针织物生产技术[M]. 北京: 中国纺织出版社, 2010:25-31.
JIANG Gaoming. Production technology of wrap knitted fabric[M]. Beijing: China Textile & Apparel Press, 2010:25-31.
[2] YUKSEKKAYA M E. Fiber fly generation of 100% cotton yarns during warp preparation[J]. Journal of The Textile Institute Proceedings, 2010, 101(3): 270-275.
[3] 胡瑜, 缪旭红. 经编织造过程对短纤纱力学性能的影响[J]. 纺织学报, 2016, 37(7):55-60.
HU Yu, MIAO Xuhong. Effect of warp knitting on mechanical properties of spun yarn[J]. Journal of Textile Research, 2016, 37(7): 55-60.
doi: 10.1177/004051756703700106
[4] 万爱兰, 缪旭红, 张灵婕, 等. 外衣用棉经编织物结构设计与生产工艺[J]. 纺织学报, 2017, 38(5):53-57.
WAN Ailan, MIAO Xuhong, ZHANG Lingjie, et al. Design and production method of cotton warp outerwear knitted fabrics[J]. Journal of Textile Research, 2017, 38(5): 53-57.
[5] 江南大学科研成果展示[J]. 棉纺织技术, 2021, 49(7):84.
Jiangnan University scientific research achievement showcase[J]. Cotton Textile Technology, 2021, 49(7):84.
[6] 蒋高明, 李欣欣. 短纤纱经编产品开发与应用[J]. 纺织导报, 2016(9):88-92.
JIANG Gaoming, LI Xinxin. Development and application of warp-knitted fabrics from spun yarn[J]. China Textile Leader, 2016(9):88-92.
[7] 张琦. 高动态响应的经编机电子横移系统研究[D]. 无锡: 江南大学, 2013:24-41.
ZHANG Qi. Research on high dynamic response characteristic of electronic shogging system for warp knitting machine[D]. Wuxi: Jiangnan University, 2013:24-41.
[8] 郑宝平, 蒋高明, 夏风林, 等. 双PID控制的经编机电子横移系统设计[J]. 纺织学报, 2012, 33(5):135-139.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Design of electronic shogging system based on based on double PID control on warp knitting machine[J]. Journal of Textile Research, 2012, 33(5):135-139.
[9] LIU Xing, MIAO Xuhong. Analysis of yarn tension based on yarn demand variation on a tricot knitting machine[J]. Textile Research Journal, 2017, 87(4):487-497.
doi: 10.1177/0040517516632473
[10] 胡瑜, 刘行, 缪旭红. 经编纱线动态张力评价指标[J]. 纺织学报, 2018, 39(2):68-72.
HU Yu, LIU Xing, MIAO Xuhong. Evaluation on dynamic tension of warp knitted yarn[J]. Journal of Textile Research, 2018, 39(2): 68-72.
[11] 郑宝平, 蒋高明, 夏风林, 等. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(9):163-169.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Design of dynamic tension compensation system for warp knitting let-off based on model predictions[J]. Journal of Textile Research, 2021, 42(9): 163-169.
[12] 蒋高明. 经编装备技术研究现状和发展趋势[J]. 纺织学报, 2012, 33(12):140-144.
JIANG Gaoming. Present research situation and developing tendency of warp knitting equipment and technology[J]. Journal of Textile Research, 2012, 33(12):140-144.
[13] 丛洪莲, 李秀丽. 经编产业用纺织品的生产与开发[J]. 纺织导报, 2011(7): 29-34.
CONG Honglian, LI Xiuli. Production and development of warp-knitted industrial textile products[J]. China Textile Leader, 2011(7): 29-34.
[14] LI Y, LUO H, YU M, et al. Fabric defect detection algorithm using RDPSO-based optimal Gabor filter[J]. Journal of The Textile Institute, 2019, 110(4):487-495.
doi: 10.1080/00405000.2018.1489951
[15] 尉苗苗, 李岳阳, 蒋高明, 等. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11):49-54.
YU Miaomiao, LI Yueyang, JIANG Gaoming, et al. Warp knit fabric defect detection method based on optimal Gabor filter[J]. Journal of Textile Research, 2016, 37(11):49-54.
[16] DONG Xia, JIANG Gaoming, MA Pibo. Warp-knitted fabric defect segmentation based on the non-subsampled wavelet-packet-based Contourlet transform[J]. Textile Research Journal, 2015, 86(19): 2043-2055.
doi: 10.1177/0040517515619356
[17] 蒋高明, 崔双双. 人工智能技术在针织行业的开发与应用[J]. 纺织导报, 2018(3):30-32,34.
JIANG Gaoming, CUI Shuangshuang. Development and application of AI technology in the knitting industry[J]. China Textile Leader, 2018(3):30-32,34.
[18] 冯英杰, 蒋高明, 彭佳佳. 人工智能引领纺织行业创新发展[J]. 现代纺织技术, 2021, 29(2):71-77.
FENG Yingjie, JIANG Gaoming, PENG Jiajia. Innovation and development of textile industry under guidance of artificial intelligence[J]. Advanced Textile Technology, 2021, 29(2):71-77.
[19] ZHANG J, JIANG G, CONG H, et al. Predictive algorithm for run-in value of warp knitting based on weave matrix[J]. Indian Journal of Fibre & Textile Research, 2018, 43(2):237-241.
[20] 董智佳, 蒋高明, 丛洪莲, 等. 经编全成形运动装款式建模与工艺实现[J]. 纺织学报, 2018, 39(2):38-42.
DONG Zhijia, JIANG Gaoming, CONG Honglian, et al. Garment model and process realization of warp-knitted fully-fashioned sportswear[J]. Journal of Textile Research, 2018, 39(2):38-42.
doi: 10.1177/004051756903900107
[21] 谢香娇, 张贵, 张飞宇, 等. 涤纶经编衬衫面料开发[J]. 针织工业, 2019(7):41-45.
XIE Xiangjiao, ZHANG Gui, ZHANG Feiyu, et al. Development of polyester warp knitted shirt fabrics[J]. Knitting Industries, 2019(7):41-45.
[22] LIU H, JIANG G, DONG Z. A shortened development process method for warp-knitted yarn-dyed shirt fabric[J]. Textile Research Journal, 2021, 91(3/4):443-455.
doi: 10.1177/0040517520937372
[23] 陈红霞, 蒋高明. 高档经编女内衣面料的开发[J]. 纺织导报, 2003(6):108-110,112-114,168.
CHEN Hongxia, JIANG Gaoming. Development of high-grade warp-knitted underwear fabrics[J]. China Textile Leader, 2003(6):108-110,112-114,168.
[24] 胡海红. 经编内衣面料结构与弹性研究[D]. 无锡: 江南大学, 2009:13-23.
HU Haihong. Research on construction and elasticity of warp underwear fabric[D]. Wuxi: Jiangnan University, 2009:13-23.
[25] Karl Mayer展示用于内衣的经编弹力平纹面料JERSEY EVOLUTION[J]. 纺织导报, 2020(5):8.
Karl Mayer display of warp-knitted stretch plain fabric for underwear JERSEY EVOLUTION[J]. China Textile Leader, 2020(5):8.
[26] 范秀君. 卡尔·迈耶:由经编织物制成的男装[J]. 国际纺织导报, 2020, 48(6):16.
FAN Xiujun. Karl Mayer:men's clothing made of warp knitted fabric[J]. Melliand China, 2020, 48(6):16.
[27] ZHAO S, HU H, HASAN K, et al. Development of auxetic warp knitted fabrics based on reentrant geometry[J]. Textile Research Journal, 2019.DOI: 10.1177/0040517519866931.
doi: 10.1177/0040517519866931
[28] 万爱兰, 缪旭红, 蒋高明, 等. 两面效应经编牛仔面料结构设计及其风格评价[J]. 纺织学报, 2017, 38(9):45-50.
WAN Ailan, MIAO Xuhong, JIANG Gaoming, et al. Structure design and handle evaluation of warp knitted denim with two-sided effect[J]. Journal of Textile Research, 2017, 38(9):45-50.
[29] 贺克杰, 蒋高明. 拉舍尔蕾丝边部的结构设计与分离工艺[J]. 纺织学报, 2019, 40(7):51-57.
HE Kejie, JIANG Gaoming. Structure design and separation technology of Raschel lace selvage[J]. Journal of Textile Research, 2019, 40(7):51-57.
[30] 蒋高明. 经编装备技术研究现状和发展趋势[J]. 纺织学报, 2012, 33(12):140-144.
JIANG Gaoming. Present research situation and developing tendency of warp knitting equipment and technology[J]. Journal of Textile Research, 2012, 33(12):140-144.
[31] 李欣欣, 蒋高明. 多梳拉舍尔花边剪线工艺设计[J]. 纺织学报, 2016, 37(10):32-37.
LIN Xinxin, JIANG Gaoming. Clipping techniques design method of multibar Raschel lace[J]. Journal of Textile Research, 2016, 37(10):32-37.
[1] JIANG Gaoming, ZHOU Mengmeng, ZHENG Baoping, ZHENG Peixiao, LIU Haisang. Research progress of green and low-carbon knitting technology [J]. Journal of Textile Research, 2022, 43(01): 67-73.
[2] ZHENG Baoping, JIANG Gaoming, XIA Fenglin, ZHANG Aijun. Design of dynamic tension compensation system for warp knitting let-off based on model predictions [J]. Journal of Textile Research, 2021, 42(09): 163-169.
[3] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[4] YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129.
[5] CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66.
[6] GUO Weidong, XIA Fenglin, ZHANG Qi. Influencing factors on high speed of electronic shogging system in warp knitting machines [J]. Journal of Textile Research, 2021, 42(01): 162-166.
[7] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[8] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[9] WANG Pan, WU Zhiming. Transverse knitting method and forming process of fully formed sweater [J]. Journal of Textile Research, 2019, 40(10): 73-78.
[10] ZHANG Qi, LUO Cheng, QU Chaoqun, WEI Li, CHENG Qian, XIA Fenglin. Key control technology of breakpoint continuous weaving applied in modern warp knitting electronic jacquard control system [J]. Journal of Textile Research, 2019, 40(10): 164-170.
[11] HE Kejie, JIANG Gaoming. Structure design and separation technology of Raschel lace selvage [J]. Journal of Textile Research, 2019, 40(07): 51-57.
[12] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[13] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[14] WU Yilun, LI Zhongjian, PAN Ruru, GAO Weidong, ZHANG Ning. Weft knitted fabric appearance simulation using colored spun yarn image [J]. Journal of Textile Research, 2019, 40(06): 111-116.
[15] YANG Kun, LI Meiqi, ZHANG Cheng, GUO Xi. Effect of structure change of warp-knitted optical fiber sensing fabric on bending loss of optical fiber inlaid [J]. Journal of Textile Research, 2019, 40(06): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!