Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 1-9.doi: 10.13475/j.fzxb.20220102509
• Invited Paper • Next Articles
KONG Weiqing1, HU Shufeng1,2, YU Senlong1, ZHOU Zhe1, ZHU Meifang1()
CLC Number:
[1] |
KONG W Q, CHEN C J, CHEN G G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200.
doi: 10.1002/smll.202008200 |
[2] |
TROVATTI E, TANG H, HAJIAN A, et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide[J]. Carbohydrate Polymers, 2018, 181:256-263.
doi: 10.1016/j.carbpol.2017.10.073 |
[3] |
ISOGAI A. Development of completely dispersed cellulose nanofibers[J]. Proceedings of the Japan Academy Series B, 2018, 94 (4):161-179.
doi: 10.2183/pjab.94.012 |
[4] |
LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590 (7844):47-56.
doi: 10.1038/s41586-020-03167-7 |
[5] |
WANG L H, FU Q X, YU J Y, et al. Cellulose nanofibrous membranes modified with phenyl glycidyl ether for efficient adsorption of bovine serum albumin[J]. Advanced Fiber Materials, 2019, 1 (3):188-196.
doi: 10.1007/s42765-019-00010-1 |
[6] |
ZHU H L, ZHU S Z, JIA Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences, 2015, 112 (29):8971-8976.
doi: 10.1073/pnas.1502870112 |
[7] |
MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections[J]. Science, 2013, 339 (6121):773-779.
doi: 10.1126/science.1220854 |
[8] |
PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nano-composites[J]. Science, 2007, 318 (5847):80-83.
doi: 10.1126/science.1143176 |
[9] |
STURCOVÁ A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules, 2005, 6(2): 1055-1061.
doi: 10.1021/bm049291k |
[10] | MARK R E. Cell wall mechanics of tracheids[J]. Quarterly Review of Biology, 1969, 44(2):230. |
[11] |
SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554 (7691):224-228.
doi: 10.1038/nature25476 |
[12] |
CHEN B, LEISTE U H, FOURNEY W L, et al. Hardened wood as a renewable alternative to steel and plastic[J]. Matter, 2021, 4(12):3941-3952.
doi: 10.1016/j.matt.2021.09.020 |
[13] |
SAITO T, KURAMAE R, WOHLERT J, et al. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation[J]. Biomacromolecules, 2013, 14(1): 248-253.
doi: 10.1021/bm301674e |
[14] |
XIAO S L, CHEN C J, XIA Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material[J]. Science, 2021, 374(6566):465-471.
doi: 10.1126/science.abg9556 |
[15] |
LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763.
doi: 10.1126/science.aau9101 |
[16] |
COUGHLAN M P. Mechanisms of cellulose degradation by fungi and bacteria[J]. Animal Feed Science and Technology, 1991, 32(1-3):77-100.
doi: 10.1016/0377-8401(91)90012-H |
[17] |
ALBERTSSON A C, HAKKARAINEN M. Designed to degrade[J]. Science, 2017, 358 (6365):872-873.
doi: 10.1126/science.aap8115 |
[18] |
WANG X Z, PANG Z Q, CHEN C J, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers[J]. Advanced Functional Materials, 2020, 30 (22):1910417.
doi: 10.1002/adfm.201910417 |
[19] |
LIU C, LUAN P C, LI Q, et al. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative[J]. Matter, 2020, 3(6): 2066-2079.
doi: 10.1016/j.matt.2020.10.004 |
[20] |
XIA Q Q, CHEN C J, YAO Y G, et al. A strong, biodegradable and recyclable lignocellulosic bioplastic[J]. Nature Sustainability, 2021, 4 (7):627-635.
doi: 10.1038/s41893-021-00702-w |
[21] |
KIM S J, KO S H, KANG K H, et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2010, 5 (4):297.
doi: 10.1038/nnano.2010.34 |
[22] |
ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide mem-branes[J]. Nature Nanotechnology, 2017, 12 (6):546-550.
doi: 10.1038/nnano.2017.21 |
[23] |
FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536:197-200.
doi: 10.1038/nature18593 |
[24] |
AN N, FLEMING A M, WHITE H S, et al. Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules[J]. Proceedings of the National Academy of Sciences, 2012, 109 (29):11504-11509.
doi: 10.1073/pnas.1201669109 |
[25] |
YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598 (7882):590-596.
doi: 10.1038/s41586-021-03885-6 |
[26] |
XIONG J, CHEN Q, EDWARDS M A, et al. Ion transport within high electric fields in nanogap electrochemical cells[J]. ACS Nano, 2015, 9 (8):8520-8529.
doi: 10.1021/acsnano.5b03522 |
[27] |
LI T, LI S X, KONG W, et al. A nanofluidic ion regulation membrane with aligned cellulose nano-fibers[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aau4238.
doi: 10.1126/sciadv.aau4238 |
[28] |
KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021, 17 (40):2008200.
doi: 10.1002/smll.202008200 |
[29] |
CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019, 29 (44):1902772.
doi: 10.1002/adfm.201902772 |
[30] |
WU Q Y, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2019, 10 (1):1902590.
doi: 10.1002/aenm.201902590 |
[31] |
AIZENBER J, FRATZL P. Biological and biomimetic materials[J]. Advanced Materials, 2010, 21 (4):387-388.
doi: 10.1002/adma.200803699 |
[32] |
HAQUE M A, KUROKAWA T, GONG J P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8(31):8008-8016.
doi: 10.1039/c2sm25670c |
[33] |
YE S, MA C, PENG L, et al. Conductive "smart" hybrid hydrogels with PNIPAM and nanostructured conductive polymers[J]. Advanced Functional Materials, 2015, 25(8): 1219-1225.
doi: 10.1002/adfm.201404247 |
[34] |
YANG F, ZHAO J, KOSHUT W J, et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage[J]. Advanced Functional Materials, 2020, 30:2003451.
doi: 10.1002/adfm.202003451 |
[35] |
SHI W, SUN M, HU X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29 (29):1701089.
doi: 10.1002/adma.201701089 |
[36] |
YE D, YANG P, LEI X, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth[J]. Chemistry of Materials, 2018, 30 (15):5175-5183.
doi: 10.1021/acs.chemmater.8b01799 |
[37] |
KONG W, WANG C, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30 (39):1801934.
doi: 10.1002/adma.201801934 |
[38] |
CHEN C, WANG Y, ZHOU T, et al. Toward strong and tough wood-based hydrogels for sensors[J]. Biomacromolecules, 2021, 22 (12):5204-5213.
doi: 10.1021/acs.biomac.1c01141 |
[39] |
CHEN G, LI T, CHEN C, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano, 2021, 15 (7):11244-11252.
doi: 10.1021/acsnano.0c10117 |
[40] | WANG X, FANG J, ZHU W, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair[J]. Advanced Functional Materials, 2021, 31:1-10. |
[41] |
STEPAN A M, MICHUD A, HELLSTEN S, et al. Ioncell-P & F: pulp fractionation and fiber spinning with ionicliquids[J]. Industrial & Engineering Chemistry Research, 2016. DOI: 10.1021/acs.iecr.6b00071.
doi: 10.1021/acs.iecr.6b00071 |
[42] |
VEHVIANNA M, KAMPPURI T, ROM M, et al. Effect of wet spinning parameters on the properties of novel cellulosic fibres[J]. Cellulose, 2008, 15: 671-680.
doi: 10.1007/s10570-008-9219-3 |
[43] |
JIA C, CHEN C J, KUANG Y D, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018, 30(30): 1801347.
doi: 10.1002/adma.201801347 |
[1] | WANG Rui, LIU Yanlin, LIU Yunyu, GU Weiwen, LIU Ziling, WEI Jianfei. Preparation and application of carbon dots with polyethylene terephthalate as precursor [J]. Journal of Textile Research, 2022, 43(02): 10-18. |
[2] | LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68. |
[3] | XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9. |
[4] | JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121. |
[5] | LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109. |
[6] | WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196. |
[7] | YANG Qun, LIANG Qi, WANG Liming, DAI Zhengwei. Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane [J]. Journal of Textile Research, 2021, 42(09): 17-23. |
[8] | WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30. |
[9] | CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51. |
[10] | YUAN Luning, WANG Jianping, ZHANG Bingjie, ZHANG Yuting, YAO Xiaofeng. Topological optimization design of dynamic moisture and temperature control for three dimensional knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 70-75. |
[11] | YANG Lu, XUE Tao, MENG Jiaguang, YANG Doudou. Anion functional finish and properties of 3D printed flexible garment fabrics [J]. Journal of Textile Research, 2021, 42(08): 102-108. |
[12] | ZHANG Bingjie, WANG Li, FU Weijie, LIU Li, WANG Jianping, LI Qianwen. Multi-dimensional analysis of differentiation demands for ski underwear [J]. Journal of Textile Research, 2021, 42(08): 161-166. |
[13] | ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183. |
[14] | ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45. |
[15] | ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38. |
|