Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 1-9.doi: 10.13475/j.fzxb.20220102509

• Invited Paper •     Next Articles

Research progress of lignocellulosic multifunctional materials

KONG Weiqing1, HU Shufeng1,2, YU Senlong1, ZHOU Zhe1, ZHU Meifang1()   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2022-01-13 Revised:2022-03-04 Online:2022-04-15 Published:2022-04-20
  • Contact: ZHU Meifang E-mail:zmf@dhu.edu.cn

Abstract:

The unique material structure, pronounced anisotropy, good mechanical properties, and micro/nano channels of nature wood endow the wood material with many remarkable properties, providing opportunities for the design of functional materials. In order to improve the utilization and high value transformation of lignocellulose, this review summarized the development of lignocellulose functional materials in view of the structure and the physical/chemical properties of lignocellulose. The effects of structural design and regulation on the properties of lignocellulosic functional materials were scrutinized. The research progress in using lignocellulosic multifunctional fiber materials as structural lightweight materials, biodegradable materials, nanofluids/energy materials, biological materials and textile materials in recent years was reviewed, and the challenges were discussed. The future development direction is proposed to provide theoretical basis and technical support for the high value transformation of lignocellulose and its modern application.

Key words: wood, lignocellulose, nano-cellulose, functional, high value, structural regulation

CLC Number: 

  • TQ351.0

Fig.1

Composition,structure(a) and application(b) of lignocellulose"

Fig.2

Schematic diagram for cycle of biomass plastic"

Fig.3

Application of lignocellulose in biomimetic materials. (a) Schematic of conventional flexible and striated skeletal muscle tissue to be emulated by wood hydrogel; (b) Schematic of hierarchical structure of natural bone; (c) Lignocellulosic biomimetic materials for bio-applications"

[1] KONG W Q, CHEN C J, CHEN G G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200.
doi: 10.1002/smll.202008200
[2] TROVATTI E, TANG H, HAJIAN A, et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide[J]. Carbohydrate Polymers, 2018, 181:256-263.
doi: 10.1016/j.carbpol.2017.10.073
[3] ISOGAI A. Development of completely dispersed cellulose nanofibers[J]. Proceedings of the Japan Academy Series B, 2018, 94 (4):161-179.
doi: 10.2183/pjab.94.012
[4] LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590 (7844):47-56.
doi: 10.1038/s41586-020-03167-7
[5] WANG L H, FU Q X, YU J Y, et al. Cellulose nanofibrous membranes modified with phenyl glycidyl ether for efficient adsorption of bovine serum albumin[J]. Advanced Fiber Materials, 2019, 1 (3):188-196.
doi: 10.1007/s42765-019-00010-1
[6] ZHU H L, ZHU S Z, JIA Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences, 2015, 112 (29):8971-8976.
doi: 10.1073/pnas.1502870112
[7] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections[J]. Science, 2013, 339 (6121):773-779.
doi: 10.1126/science.1220854
[8] PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nano-composites[J]. Science, 2007, 318 (5847):80-83.
doi: 10.1126/science.1143176
[9] STURCOVÁ A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules, 2005, 6(2): 1055-1061.
doi: 10.1021/bm049291k
[10] MARK R E. Cell wall mechanics of tracheids[J]. Quarterly Review of Biology, 1969, 44(2):230.
[11] SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554 (7691):224-228.
doi: 10.1038/nature25476
[12] CHEN B, LEISTE U H, FOURNEY W L, et al. Hardened wood as a renewable alternative to steel and plastic[J]. Matter, 2021, 4(12):3941-3952.
doi: 10.1016/j.matt.2021.09.020
[13] SAITO T, KURAMAE R, WOHLERT J, et al. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation[J]. Biomacromolecules, 2013, 14(1): 248-253.
doi: 10.1021/bm301674e
[14] XIAO S L, CHEN C J, XIA Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material[J]. Science, 2021, 374(6566):465-471.
doi: 10.1126/science.abg9556
[15] LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763.
doi: 10.1126/science.aau9101
[16] COUGHLAN M P. Mechanisms of cellulose degradation by fungi and bacteria[J]. Animal Feed Science and Technology, 1991, 32(1-3):77-100.
doi: 10.1016/0377-8401(91)90012-H
[17] ALBERTSSON A C, HAKKARAINEN M. Designed to degrade[J]. Science, 2017, 358 (6365):872-873.
doi: 10.1126/science.aap8115
[18] WANG X Z, PANG Z Q, CHEN C J, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers[J]. Advanced Functional Materials, 2020, 30 (22):1910417.
doi: 10.1002/adfm.201910417
[19] LIU C, LUAN P C, LI Q, et al. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative[J]. Matter, 2020, 3(6): 2066-2079.
doi: 10.1016/j.matt.2020.10.004
[20] XIA Q Q, CHEN C J, YAO Y G, et al. A strong, biodegradable and recyclable lignocellulosic bioplastic[J]. Nature Sustainability, 2021, 4 (7):627-635.
doi: 10.1038/s41893-021-00702-w
[21] KIM S J, KO S H, KANG K H, et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2010, 5 (4):297.
doi: 10.1038/nnano.2010.34
[22] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide mem-branes[J]. Nature Nanotechnology, 2017, 12 (6):546-550.
doi: 10.1038/nnano.2017.21
[23] FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536:197-200.
doi: 10.1038/nature18593
[24] AN N, FLEMING A M, WHITE H S, et al. Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules[J]. Proceedings of the National Academy of Sciences, 2012, 109 (29):11504-11509.
doi: 10.1073/pnas.1201669109
[25] YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598 (7882):590-596.
doi: 10.1038/s41586-021-03885-6
[26] XIONG J, CHEN Q, EDWARDS M A, et al. Ion transport within high electric fields in nanogap electrochemical cells[J]. ACS Nano, 2015, 9 (8):8520-8529.
doi: 10.1021/acsnano.5b03522
[27] LI T, LI S X, KONG W, et al. A nanofluidic ion regulation membrane with aligned cellulose nano-fibers[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aau4238.
doi: 10.1126/sciadv.aau4238
[28] KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021, 17 (40):2008200.
doi: 10.1002/smll.202008200
[29] CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019, 29 (44):1902772.
doi: 10.1002/adfm.201902772
[30] WU Q Y, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2019, 10 (1):1902590.
doi: 10.1002/aenm.201902590
[31] AIZENBER J, FRATZL P. Biological and biomimetic materials[J]. Advanced Materials, 2010, 21 (4):387-388.
doi: 10.1002/adma.200803699
[32] HAQUE M A, KUROKAWA T, GONG J P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8(31):8008-8016.
doi: 10.1039/c2sm25670c
[33] YE S, MA C, PENG L, et al. Conductive "smart" hybrid hydrogels with PNIPAM and nanostructured conductive polymers[J]. Advanced Functional Materials, 2015, 25(8): 1219-1225.
doi: 10.1002/adfm.201404247
[34] YANG F, ZHAO J, KOSHUT W J, et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage[J]. Advanced Functional Materials, 2020, 30:2003451.
doi: 10.1002/adfm.202003451
[35] SHI W, SUN M, HU X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29 (29):1701089.
doi: 10.1002/adma.201701089
[36] YE D, YANG P, LEI X, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth[J]. Chemistry of Materials, 2018, 30 (15):5175-5183.
doi: 10.1021/acs.chemmater.8b01799
[37] KONG W, WANG C, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30 (39):1801934.
doi: 10.1002/adma.201801934
[38] CHEN C, WANG Y, ZHOU T, et al. Toward strong and tough wood-based hydrogels for sensors[J]. Biomacromolecules, 2021, 22 (12):5204-5213.
doi: 10.1021/acs.biomac.1c01141
[39] CHEN G, LI T, CHEN C, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano, 2021, 15 (7):11244-11252.
doi: 10.1021/acsnano.0c10117
[40] WANG X, FANG J, ZHU W, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair[J]. Advanced Functional Materials, 2021, 31:1-10.
[41] STEPAN A M, MICHUD A, HELLSTEN S, et al. Ioncell-P & F: pulp fractionation and fiber spinning with ionicliquids[J]. Industrial & Engineering Chemistry Research, 2016. DOI: 10.1021/acs.iecr.6b00071.
doi: 10.1021/acs.iecr.6b00071
[42] VEHVIANNA M, KAMPPURI T, ROM M, et al. Effect of wet spinning parameters on the properties of novel cellulosic fibres[J]. Cellulose, 2008, 15: 671-680.
doi: 10.1007/s10570-008-9219-3
[43] JIA C, CHEN C J, KUANG Y D, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018, 30(30): 1801347.
doi: 10.1002/adma.201801347
[1] WANG Rui, LIU Yanlin, LIU Yunyu, GU Weiwen, LIU Ziling, WEI Jianfei. Preparation and application of carbon dots with polyethylene terephthalate as precursor [J]. Journal of Textile Research, 2022, 43(02): 10-18.
[2] LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68.
[3] XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9.
[4] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[5] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[6] WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196.
[7] YANG Qun, LIANG Qi, WANG Liming, DAI Zhengwei. Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane [J]. Journal of Textile Research, 2021, 42(09): 17-23.
[8] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[9] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[10] YUAN Luning, WANG Jianping, ZHANG Bingjie, ZHANG Yuting, YAO Xiaofeng. Topological optimization design of dynamic moisture and temperature control for three dimensional knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 70-75.
[11] YANG Lu, XUE Tao, MENG Jiaguang, YANG Doudou. Anion functional finish and properties of 3D printed flexible garment fabrics [J]. Journal of Textile Research, 2021, 42(08): 102-108.
[12] ZHANG Bingjie, WANG Li, FU Weijie, LIU Li, WANG Jianping, LI Qianwen. Multi-dimensional analysis of differentiation demands for ski underwear [J]. Journal of Textile Research, 2021, 42(08): 161-166.
[13] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
[14] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[15] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!