Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 1-7.doi: 10.13475/j.fzxb.20220301907

• Fiber Materials •     Next Articles

Preparation and properties of flexible structural color film based on immobilization of liquid photonic crystals

GAO Yiping1, LI Yichen1,2, WANG Xiaohui1, LIU Guojin1,3, ZHOU Lan1,3, SHAO Min1,3, SHAO Jianzhong1,3()   

  1. 1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    3. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-03-04 Revised:2022-09-19 Online:2022-12-15 Published:2023-01-06
  • Contact: SHAO Jianzhong E-mail:jshao@zstu.edu.cn

Abstract:

Aiming at the poor structural stability of photonic crystal materials, photo-curable flexible monomers were used to replace conventional assembly medium of water to prepare liquid photonic crystals. A non-close-packed photonic crystals array was built with SiO2 nanospheres embedded in an elastomer polymerized by UV-curing, to produce a flexible photonic crystals film with structural stability. The optical properties of liquid photonic crystals were regulated and controlled by the volume fraction of SiO2 nanospheres in the colloidal system and the particle size of SiO2 nanospheres. It is revealed that as the volume fraction of SiO2 nanospheres increases from 22% to 40%, the average spacing between the microspheres gradually decreases, and the structure color shifts to blue accordingly, while fixing the volume fraction of SiO2 nanospheres causes the structural color shifts to red when increasing the particle size of SiO2 nanospheres from 123 nm to 178 nm. The liquid photonic crystals show bright color with high saturation, and after ultraviolet irradiation the target product of solid photonic crystals film shows obvious iridescent effect and excellent flexibility. The results indicate excellent force-induced color change performance and a promising application potential in the field of smart wearable textile materials.

Key words: liquid photonic crystal, structural color, photo-curing, structural color film, flexibility, mechanochromic, textile substrate

CLC Number: 

  • TS193.5

Fig.1

Regulation of optical properties of SiO2/PHEA LPCs. (a) Optical photographs of LPCs with different φ S i O 2; (b) Reflectance spectra of LPCs with different φ S i O 2; (c) Optical photographs of LPCs with different particle sizes; (d) Reflectance spectra of LPCs with different particle sizes"

Fig.2

Dynamic recovery of LPCs. (a) Self-assembly process; (b) Schematic illustration of recovery transformation between reversibly disassembly and reassembly process; (c) Spectral changes during assembly; (d) Periodic changes of reflection intensities during reversibly disassembly and reassembly process"

Fig.3

Fabrication of SiO2/P(PHEA) photonic crystal film. (a) Schematic diagram of fabrication process; (b) Optical images of photonic crystal film with different SiO2 sizes; (c) Reflectance spectra of photonic crystal film with different SiO2 size"

Fig.4

SEM images of top-surface(a) and cross-section (b) of SiO2/P(PHEA) photonic crystals structure"

Fig.5

Mechanochromic properties of flexible photonic crystals film. (a) Optical images in different strains; (b) Mechanisms of mechanochromic; (c) Reflectance spectra in different strain; (d) Reflection wavelength variation at ten relaxation-tension cycles"

Fig.6

Iridescence effect of structurally colored fabric. (a) Schematic diagram of variable angle observation; (b) Optical images at different viewing angles; (c) Reflectance spectra at different viewing angles"

Fig.7

Structurally colored fabrics in curled (a) and stretched (b) state"

[1] KINOSHITA S, YOSHIOKA S, FUJII Y, et al. Photophysics of structural color in the Morpho butter-flies[J]. Forma, 2002, 17(2): 103-121.
[2] SHANG L L, ZHANG W X, XU K, et al. Bio-inspired intelligent structural color materials[J]. Materials Horizons, 2019, 6(5): 945-958.
doi: 10.1039/c9mh00101h
[3] LEE G H, CHOI T M, KIM B, et al. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays[J]. ACS Nano, 2017, 11(11): 11350-11357.
doi: 10.1021/acsnano.7b05885 pmid: 29095594
[4] ZHOU L, LI Y C, LIU G J, et al. Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric sub-strates[J]. Dyes and Pigments, 2016. DOI: 10.1016/j.dyepig.2016.06.032.
doi: 10.1016/j.dyepig.2016.06.032
[5] SHAO J Z, LIU G J, ZHOU L, et al. The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41750.
doi: 10.1002/app.41750
[6] 陈欢欢, 高伟洪, 陈凯凯, 等. 光子晶体结构色纺织材料的制备及应用研究进展[J]. 化工进展, 2022, 41(8): 4327-4340.
CHEN Huanhuan, GAO Weihong, CHEN Kaikai, et al. Research progress on the fabrication and application of textile materials with photonic crystal structural colors[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4327-4340.
[7] KO H, ZHANG Z X, HO J C, et al. Flexible carbon-nanofiber connectors with anisotropic adhesion proper-ties[J]. Small, 2010, 6(1): 22-26.
doi: 10.1002/smll.200901867
[8] ZHAO Y J, ZHAO X W, SUN C, et al. Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay[J]. Analytical Chemistry, 2008, 80(5): 1598-605.
doi: 10.1021/ac702249a pmid: 18247635
[9] KIM J B, LEE S Y, LEE J M, et al. Designing structural-color patterns composed of colloidal arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14485-14509.
[10] 李壮, 金梦婷, 刘国金, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2): 637-644.
LI Zhuang, JIN Mengting, LIU Guojin, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 sol[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 637-644.
[11] KIM S, LEE S, YANG S, et al. Self-assembled colloidal structures for photonics[J]. NPG Asia Mater, 2011, 3(1): 25-33.
doi: 10.1038/asiamat.2010.192
[12] WANG J X, WEN Y Q, GE H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. Macromolecular Chemistry and Physics, 2006, 207(6): 596-604.
doi: 10.1002/macp.200500563
[13] LI Y C, WANG X H, HU M G, et al. Patterned SiO2/PUA inverse opal photonic crystals with high color saturation and tough mechanical strength[J]. Langmuir, 2019. DOI: 10.1021/acs.langmuir.9b02485.
doi: 10.1021/acs.langmuir.9b02485
[14] GE D T, LEE E, YANG L L, et al. A robust smart window: reversibly switching from high transparency to angle-independent structural color display[J]. Advanced Materials, 2015, 27(15): 2489-2495.
doi: 10.1002/adma.201500281
[15] ZHAO K, GAO X F, ALSAID Y, et al. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.130870.
doi: 10.1016/j.cej.2021.130870
[16] FINLAYSON C, HAINES A, SNOSWELL D, et al. Interplay of index contrast with periodicity in polymer photonic crystals[J]. Applied Physics Letters, 2011. DOI: 10.1063/1.3672215.
doi: 10.1063/1.3672215
[17] LI Y C, FAN Q G, WANG X H, et al. Structural coloration: shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of tex-tiles[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202170133.
doi: 10.1002/adfm.202170133
[18] WANG C, LIN X, GE J P, et al. Photonic crystals: spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202170060.
doi: 10.1002/adfm.202170060
[19] ZHANG X Y, FU Q Q, GE J P. Triple-state invisible photonic crystal pattern encrypted in hollow-silica/polyurethane film for anticounterfeiting applications[J]. Advanced Photonics Research, 2021. DOI: 10.1002/adpr.202000208.
doi: 10.1002/adpr.202000208
[20] YANG D P, YE S Y, GE J P, et al. Solvent wrapped metastable colloidal crystals: highly mutable colloidal assemblies sensitive to weak external disturbance[J]. Journal of the American Chemical Society, 2013, 135(49): 18370-18376.
doi: 10.1021/ja405670r pmid: 24266836
[21] FU Q Q, ZHU H M, GE J P, et al. Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201804628.
doi: 10.1002/adfm.201804628
[22] 薛敏, 李琪, 王家伦, 等. 机械力致变色光子晶体材料研究进展[J]. 包装工程, 2021, 42(10): 44-53.
XUE Min, LI Qi, WANG Jialun, et al. Research progress of mechanochromic photonic crystal mate-rials[J]. Packaging Engineering, 2021, 42(10): 44-53.
[23] HSIEH C H, LU Y C, YANG H T. Self-assembled mechanochromic shape memory photonic crystals by doctor blade coating[J]. ACS Applied Materials & Interfaces, 2020. DOI: 10.1021/acsami.0c07410.
doi: 10.1021/acsami.0c07410
[24] LEE G H, HAN S H, KIM S H, et al. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation[J]. Chemistry of Materials, 2019, 31(19): 8154-8162.
doi: 10.1021/acs.chemmater.9b02938
[25] AGUIRRE C, REGUERA E, STEIN A. Colloidal photonic crystal pigments with low angle depen-dence[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3257-3262.
[1] YANG Chunli, ZHOU Weixian, LIANG Jinglong, LIN Guizhen, LIU Jie, NI Yanpeng, LIU Yun, SHANG Shenglong, ZHU Ping. Rapid preparation and properties of structural colored calcium alginate fibers triggered by magnetic field [J]. Journal of Textile Research, 2022, 43(09): 64-69.
[2] ZHANG Xingyue, HAN Pengshuai, WANG Yimeng, ZHANG Yunxiao, ZHOU Lan, LIU Guojin. Construction of highly stable photonic crystals on textile substrates with asymmetric wetting characteristics [J]. Journal of Textile Research, 2022, 43(08): 88-94.
[3] ZHU Xiaowei, WEI Tianchen, LI Yijiang, XING Tieling, CHEN Guoqiang. Structural coloration of polystyrene/iron-tannin acid complex nanospheres on cotton fabrics [J]. Journal of Textile Research, 2022, 43(05): 32-37.
[4] WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles [J]. Journal of Textile Research, 2021, 42(12): 1-14.
[5] ZHU Xiaowei, WEI Tianchen, XING Tieling, CHEN Guoqiang. Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures [J]. Journal of Textile Research, 2021, 42(09): 90-96.
[6] LIU Mingxue, ZHAO Qian, WANG Xiaohui, LIU Qiongxi, SHAO Jianzhong. Bonding fastness of magnetron sputtering nano-films with various textile substrates [J]. Journal of Textile Research, 2021, 42(02): 135-141.
[7] WANG Xiaohui, LI Yichen, LIU Guojin, TANG Zuping, ZHOU Lan, SHAO Jianzhong. Preparation and optical properties of flexible photonic crystal film for structural colors [J]. Journal of Textile Research, 2021, 42(02): 12-20.
[8] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[9] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[10] CHEN Jiaying, XIN Binjie, XIN Sanfa, DU Weiping, XU Yingqi, GAO Weihong. Research progress in structurally colored fabrics using photonic crystals [J]. Journal of Textile Research, 2020, 41(04): 181-187.
[11] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[12] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[13] YANG Xiaobing, YANG Guang, TAN Wenli, GUO Jingwen, DING Songtao, ZHONG Jinyi. Impact of latest development trend of international standardization on GB 24539—2009 for chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 165-170.
[14] . Novel test method and optimization for characterizing the flexibility of monofilaments [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 27-31.
[15] . Structure analysis and color formation of Liang cloth [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!