Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (06): 225-231.doi: 10.13475/j.fzxb.20220304802
• Comprehensive Review • Previous Articles Next Articles
YUAN Jie1,2, ZHAI Shu'na2, LOU Lin1,2,3(), WANG Qicai4, LEI Yutian5
CLC Number:
[1] | 程宁波, 吴志明. 服装压力舒适性的研究方法及发展趋势[J]. 丝绸, 2019, 56(3): 38-44. |
CHENG Ningbo, WU Zhiming. Research methods and development trend of clothing pressure comfort[J]. Journal of Silk, 2019, 56(3): 38-44. | |
[2] |
MALEK A S, ELNAHRAWY A, ANWAR H, et al. From fabric to smart T-shirt: fine tuning an improved robust system to detect arrhythmia[J]. Textile Research Journal, 2022, 92(17/18): 3204-3220.
doi: 10.1177/00405175211060887 |
[3] |
CUBRIC I S, CUBRIC G, MATKOVIC V M P, et al. The comfort of knitted fabrics: interaction of sportswear and athlete's body[J]. Communications in Development and Assembling of Textile Products, 2021, 2(1): 70-79.
doi: 10.25367/cdatp.2021.2 |
[4] |
AWAIS M, KRZYWINSKI S, WENDT E. A novel modeling and simulation approach for the prediction of human thermophysiological comfort[J]. Textile Research Journal, 2021, 91(5): 691-705.
doi: 10.1177/0040517520955227 |
[5] |
KLRCL F, KARAMANLARGIL E, DURU S C, et al. Comfort properties of medical compression stockings from biodesigned and cotton fibers[J]. Fibers and Polymers, 2021, 22(10): 2929-2936.
doi: 10.1007/s12221-021-0615-8 |
[6] |
ANGELUCCI A, CAVICCHIOLI M, CINTORRINO I A, et al. Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques[J]. Sensors, 2021, 21(3): 814.
doi: 10.3390/s21030814 |
[7] |
ORTIZ M, VICENTE P, IANEZ E, et al. Assessing footwear comfort by electroencephalography analysis[J]. IEEE Access, 2021, 9: 134259-134269.
doi: 10.1109/ACCESS.2021.3115179 |
[8] | 苑洁, 于伟东, 陈克敏. 基于功能磁共振的织物触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152. |
YUAN Jie, YU Weidong, CHEN Kemin. Research progress in brain perception of fabric tactile comfort based on functional magnetic resonance[J]. Journal of Textile Research, 2017, 38(10): 146-152. | |
[9] |
ROMERO F V, RODRIGUEZ P, POZO M A, et al. Can you change your mind? an ERP study of cognitive flexibility and new evidence integration[J]. Biological Psychology, 2022.DOI:10.1016/j.biopsycho.2022.108354.
doi: 10.1016/j.biopsycho.2022.108354 |
[10] |
LYTAEV S, VATAMANIUK I J B S. Physiological and medico-social research trends of the wave P300 and more late components of visual event-related potentials[J]. Brain Sciences, 2021, 11(1): 125.
doi: 10.3390/brainsci11010125 |
[11] | BHANU R, SHANKAR M S V, PRAMODH V. Does gender influence P300 latency and mini mental state examination score in type 2 diabetes mellitus pati-ents?[J]. National Journal of Physiology, Pharmacy and Pharmacology, 2022, 12(4): 468-471. |
[12] |
BERCHIO C, MICALI N. Cognitive assessment using ERP in child and adolescent psychiatry: difficulties and opportunities[J]. Psychiatry Research: Neuroimaging, 2022. DOI:10.1016/j.pscychresns. 2021.111424.
doi: 10.1016/j.pscychresns. 2021.111424 |
[13] | SCHREYER M, BAUMGARTNER M, RUUD F, et al. Artificial intelligence in internal audit as a contribution to effective governance-deep-learning enabled detection of anomalies in financial accounting data[J]. Expert Focus, 2022 (1): 39-44. |
[14] |
MOEREL M, YACOUB E, GULBAN O F, et al. Using high spatial resolution fMRI to understand representation in the auditory network[J]. Progress in Neurobiology, 2021. DOI: 10.1016/j.pneurobio. 2020. 101887.
doi: 10.1016/j.pneurobio. 2020. 101887 |
[15] |
BAGHDADI G, AMIRI M. Detection of static, dynam-ic, and no tactile friction based on nonlinear dynamics of EEG signals: a preliminary study[J]. Chaos, Solitons & Fractals, 2021. DOI:10.1016/j.chaos.2020.110449142.
doi: 10.1016/j.chaos.2020.110449142 |
[16] | 赵向东. 视觉事件相关电位(P300)地形图及其应用[J]. 现代电生理学杂志, 2013, 20(2): 112-117. |
ZHAO Xiangdong. Visual event-related poten-tial (P300) topographic map and its application[J]. Modern Journal of Electrophysiology, 2013, 20(2): 112-117. | |
[17] | 徐桂芝, 王宁, 张天恒, 等. 虚拟现实视觉体验对事件相关电位影响的研究[J]. 信号处理, 2018, 34(8): 952-962. |
XU Guizhi, WANG Ning, ZHANG Tianheng, et al. Study on the effect of virtual reality visual experience on event-related potential[J]. Signal Processing, 2018, 34(8): 952-962. | |
[18] |
HORST R L, JOHNSON R, DONCHIN E. Event-related brain potentials and subjective probability in a learning task[J]. Memory & Cognition, 1980, 8(5): 476-488.
doi: 10.3758/BF03211144 |
[19] | 吴豹, 杨苏勇, 胡浩宇, 等. 事件相关电位在疼痛领域中的研究进展和应用[J]. 中国疼痛医学杂志, 2019, 25(5): 378-382. |
WU Bao, YANG Suyong, HU Haoyu, et al. Research progress and application of event-related potential in pain[J]. Chinese Journal of Pain Medicine, 2019, 25(5): 378-382. | |
[20] |
CLAYSON P E, BRUSH C J, HAJACK G. Data quality and reliability metrics for event-related potentials (ERPs): the utility of subject-level reliability[J]. International Journal of Psychophysiology, 2021, 165: 121-136.
doi: 10.1016/j.ijpsycho.2021.04.004 |
[21] |
HOEFER D, HANDEL M, MÜLLER K M, et al. Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event-related potentials[J]. Skin Research and Technology, 2016, 22(4): 470-478.
doi: 10.1111/srt.12288 pmid: 26991667 |
[22] | CHEN S, GE S. Experimental research on the tactile perception from fingertip skin friction[J]. Wear, 2017, 376: 305-314. |
[23] | 陈思, 葛世荣, 时晓露, 等. 摩擦诱发的事件相关电位认知成分特征研究[J]. 摩擦学学报, 2015, 35(5): 538-542. |
CHEN Si, GE Shirong, SHI Xiaolu, et al. Cognitive components of friction-induced event-related poten-tials[J]. Tribology Journal, 2015, 35(5): 538-542. | |
[24] | 刘陶峰, 李一员, 李炜, 等. 确定性纹理表面特征高度对皮肤摩擦感知的影响[J]. 西南交通大学学报, 2020, 55(2): 372-378. |
LIU Taofeng, LI Yiyuan, LI Wei, et al. Effect of deterministic texture surface feature height on skin friction perception[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 372-378. | |
[25] | 夏羽. 基于神经电生理学的丝织物触感评价和认知研究[D]. 苏州: 苏州大学, 2017: 28-32. |
XIA Yu. Research on sensory evaluation and cognition of silk fabric based on neuroelectrophysiology[D], Suzhou: Soochow University, 2017: 28-32. | |
[26] |
TANG W, LU X, CHEN S, et al. Tactile perception of skin: research on late positive component of event-related potentials evoked by friction[J]. Journal of The Textile Institute, 2020, 111(5): 623-629.
doi: 10.1080/00405000.2019.1661067 |
[27] |
TANG W, LIU R, SHI Y, et al. From finger friction to brain activation: tactile perception of the roughness of gratings[J]. Journal of Advanced Research, 2020, 21:129-139.
doi: 10.1016/j.jare.2019.11.001 pmid: 32071781 |
[28] |
LIU Y, CHEN D. The influence of clothing pressure exerted by girdle on inhibition ability of young fe-males[J]. International Journal of Clothing Science and Technology, 2016, 28(5): 712-722.
doi: 10.1108/IJCST-07-2015-0085 |
[29] |
CHEN A, BAILEY K, TIERNAN B N, et al. Neural correlates of stimulus and response interference in a 2-1 mapping stroop task[J]. International Journal of Psychophysiology, 2011, 80(2): 129-138.
doi: 10.1016/j.ijpsycho.2011.02.012 pmid: 21356252 |
[30] |
SZUCS D, SOLTESZ F. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study[J]. BMC Neuroscience, 2012, 13(1): 1-14.
doi: 10.1186/1471-2202-13-1 |
[31] |
MENA C I, LANG K, GHERRI E. Electrophysiological correlates of attentional selection in tactile search tasks: the impact of singleton distractors on target selection[J]. Psychophysiology, 2020. DOI: 10.1111/psyp. 2019. 13592.
doi: 10.1111/psyp. 2019. 13592 |
[32] |
RIGATO S, BREMNER A J, GILLMEISTER H, et al. Interpersonal representations of touch in somatosensory cortex are modulated by perspective[J]. Biological Psychology, 2019. DOI: 10.1016/j.biopsycho. 2019. 107719.
doi: 10.1016/j.biopsycho. 2019. 107719 |
[33] |
DING M, SONG M, PEI H, et al. The emotional design of product color: an eye movement and event-related potentials study[J]. Color Research Application, 2021, 46(4): 871-879.
doi: 10.1002/col.v46.4 |
[34] | 陈雁, 李栋高. 服装颜色的感觉生理研究[J]. 纺织学报, 2004, 25(3): 68-69. |
CHEN Yan, LI Donggao. Sensory physiology of clothing color[J]. Journal of Textile Research, 2004, 25(3): 68-69. | |
[35] | 吕佳, 陈东生. 基于事件相关电位技术的服装审美情绪研究[J]. 人类工效学, 2013, 19(2): 63-65. |
LÜ Jia, CHEN Dongsheng. Research on aesthetic emotion of clothing based on event-related potential[J]. Human Ergonomics, 2013, 19(2): 63-65. | |
[36] | 贾君君. 基于丝织物色彩的视觉认知评价[D]. 苏州: 苏州大学, 2016: 36-50. |
JIA Junjun. Visual cognitive evaluation based on color of silk fabric[D]. Suzhou: Soochow University, 2016: 36-50. | |
[37] | 柏慧群. 基于行为及 ERP 的服装色彩组合审美研究[D]. 苏州: 苏州大学, 2017: 34-63. |
BAI Huiqun. Research on the color combination of clothing based on ERPs[D]. Suzhou: Soochow University, 2017: 34-63. | |
[38] | 张红. 丝织物的色彩搭配视觉认知研究[D]. 苏州: 苏州大学, 2018: 42-65. |
ZHANG Hong. Research on color matching of silk fabric[D]. Suzhou: Soochow University, 2018: 42-65. | |
[39] |
STYLIOS G K, CHEN M. The concept of psychotextiles; interactions between changing patterns and the human visual brain, by a novel composite SMART fabric[J]. Materials, 2020. DOI: 10.3390/ma. 2019. 13030725.
doi: 10.3390/ma. 2019. 13030725 |
[40] | 莫换平. 纺织品冷暖色搭配视觉认知研究[D]. 苏州: 苏州大学, 2020: 20-22. |
MO Huanping. Research on visual cognition of cold and warm color collocation of textile[D]. Suzhou: Soochow University, 2020: 20-22. |
[1] | YUAN Jie, LOU Lin, WANG Qicai. Research progress of brain perception technology for fabric tactile comfort [J]. Journal of Textile Research, 2022, 43(09): 211-217. |
[2] | . Brain cognitive characterization of contact pressure comfort of fabrics based on functional magnetic resonance imaging [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 146-152. |
[3] | LU Jia, CHEN Dong-sheng. Application of emotional event-related potentials in fashion design [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(2): 151-156. |
|