Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 41-45.doi: 10.13475/j.fzxb.20220305305

• Textile Engineering • Previous Articles     Next Articles

Influence of digital yarn characteristic parameters on fabric appearance

GUO Mingrui, GAO Weidong()   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2022-03-14 Revised:2022-08-10 Online:2022-11-15 Published:2022-12-26
  • Contact: GAO Weidong E-mail:gaowd3@163.com

Abstract:

In order to clarify the classification of characteristics of digital yarns based on the digital ring spinning and its influence on the fabric structure and appearance. By analyzing the principle of two-channel two-stage drawing digital spinning, a variety of yarns with varying linear densities or blending ratios were spun. The characteristic parameters of digital yarns were selected to include the base linear density, cycle length, variation range of blending ratio (linear density), number of fragments within a cycle or variation gradient between two adjacent segments. It is concluded that the greater the variation range of blending ratio (linear density), the stronger the segment color (slub) effect, and that the width of the fabric strip is determined by the cycle length and a longer period corresponds to a wider segment effect. The number of segments contained in a cycle has certain influence on the strength of segment color effect, and as the number of segments increases the segment color effect demonstrates a decrease.

Key words: ring digital yarn, yarn, blending ratio, linear density, segment color effect, slub effect

CLC Number: 

  • TS104.1

Fig.1

Structure diagram of digital yarn fragment"

Fig.2

Weft knit fabrics with different blended ratios"

Fig.3

Weft knit fabrics with different cycle lengths"

Fig.4

Weft knit fabrics of variable blended ratios yarns with different fragments. (a) 6 fragments; (b) 10 fragments; (c) 20 fragments"

Fig.5

Perspective view of weft knit fabrics of variable linear density yarns"

Fig.6

Perspective view of weft knit fabrics of variable linear density yarns with different cycle lengths"

Fig.7

Perspective view of weft knit fabrics of variable linear density yarns with different fragments in one cycle. (a) 6 fragments; (b) 10 fragments; (c) 20 fragments"

[1] 高卫东, 郭明瑞, 薛元, 等. 基于环锭纺的数码纺纱方法[J]. 纺织学报, 2016, 37(7):44-48.
GAO Weidong, GUO Mingrui, XUE Yuan, et al. Digital spinning method developed from ring spin-ning[J]. Journal of Textile Research, 2016, 37(7):44-48.
[2] 张洪, 谢春萍, 张昀, 等. 段彩竹节纱纺制工艺探讨[J]. 棉纺织技术, 2012, 40(3):15-18.
ZHANG Hong, XIE Chunping, ZHANG Yun, et al. Discussion of spinning section-color slub yarn[J]. Cotton Textile Technology, 2012, 40(3): 15-18.
[3] 李梦娟, 黄艳红, 葛明桥. 夜光段彩竹节纱的纺制工艺及性能分析[J]. 丝绸, 2014, 51(11):5-9.
LI Mengjuan, HUANG Yanhong, GE Mingqiao. Spinning technology and property analysis of luminous section-color slub yarn[J]. Journal of Silk, 2014, 51(11):5-9.
[4] LIU X J, ZHANG H, SU X Z. Research on evenness of section-color yarn[J]. Journal of The Textile Institute, 2014, 105(12):1272-1278.
doi: 10.1080/00405000.2014.886367
[5] 史晶晶, 陈伟雄, 薛元, 等. 后区牵伸对等线密度棉段彩纱性能的影响[J]. 纺织学报, 2013, 34(6):30-33.
SHI Jingjing, CHEN Weixiong, XUE Yuan, et al. Effect of back zone draft on physical properties of segment colored cotton yarn with constant linear density[J]. Journal of Textile Research, 2013, 34(6): 30-33.
[6] GUO M R, SUN F X, GAO W D. Theoretical and experimental study of color-alternation fancy yarns produced by a two-channel compact spinning ma-chine[J]. Textile Research Journal, 2019, 89(14):2714-2753.
[7] 何卫民, 马淑静, 高明初, 等. 一种平纱段彩纱的简易生产方法[J]. 棉纺织技术, 2021, 49(1): 52-55.
HE Weimin, MA Shujing, GAO Mingchu, et al. A simple production method of flat segement colored yarn[J]. Cotton Textile Technology, 2021, 49(1): 52-55.
[8] 槌田大辅. 纺纱机的牵伸装置: 201480019063.X[P]. 2014-08-25.
DAISY Daisaku. Drafting device in spinning machine: 201480019063.X[P]. 2014-08-25.
[9] 郭明瑞, 杨瑞华, 周建, 等. 环锭数码纺粗纱喂入位置对混色纱表面显色的影响[J]. 纺织学报, 2018, 39(4):30-35, 41.
GUO Mingrui, YANG Ruihua, ZHOU Jian, et al. Influence of roving feeding location of ring digital spinning on color proportion of melange yarn[J]. Journal of Textile Research, 2018, 39(4):30-35, 41.
[10] 贺玉东, 薛元, 高卫东, 等. 基于Stearns-Noechel模型的双通道环锭数码混色纱颜色预测[J]. 纺织学报, 2018, 39(5):32-37.
HE Yudong, XUE Yuan, GAO Weidong, et al. Color prediction of double channel digital ring spinning melange yarn based on Stearns-Noechel model[J]. Journal of Textile Research, 2018, 39(5):32-37.
[11] GUO M R, SUN F X, WANG L, et al. Analysis of the appearance of two-color cotton yarn by the two-channel spinning system[J]. Textile Research Journal, 2019, 89(9):1712-1724.
doi: 10.1177/0040517518779250
[1] PENG Laihu, ZHANG Yujuan, LÜ Yongfa, DAI Ning, LI Jianqiang. Detection method and dynamic characteristics of weft yarn delivery [J]. Journal of Textile Research, 2022, 43(12): 167-172.
[2] LI Hao, CAO Qiaoli, LI Jiawei, HAN Zhenning, YU Chongwen. Design of simulation and control system for sliver blending [J]. Journal of Textile Research, 2022, 43(12): 48-53.
[3] AO Limin, SU Juan, TANG Wen. Influencing factors on wrapping twist and twist distribution in hollow spindle spinning [J]. Journal of Textile Research, 2022, 43(12): 54-61.
[4] LI Yang, PENG Laihu, ZHENG Qiuyang, HU Xudong. Simulation and prediction of yarn creep performance based on fractional model [J]. Journal of Textile Research, 2022, 43(11): 46-51.
[5] CHENG Lu, MA Chongqi, ZHOU Huimin, WANG Ying, XIA Xin. Optimization of full spectrum color matching algorithm for color spun yarn based on visual characteristics [J]. Journal of Textile Research, 2022, 43(10): 38-44.
[6] LI Jianna, CHEN Xi, SHAO Huiqi, SHAO Guangwei, JIANG Jinhua, CHEN Nanliang. Effect of dynamic mechanical load on mechanical and electrical properties of ultra-fine gold coated molybdenum wires [J]. Journal of Textile Research, 2022, 43(10): 45-52.
[7] DENG Zhongmin, YU Dongyang, HU Haodong, LI Tong, KE Wei. Tracking and detection hairiness path in yarns [J]. Journal of Textile Research, 2022, 43(09): 101-106.
[8] MAO Huimin, SUN Lei, TU Jiajia, SHI Weimin. Key technology for yarn automatic splicer [J]. Journal of Textile Research, 2022, 43(09): 21-26.
[9] WU Le, ZHANG Qian, YANG Wanran, XU Zhaoyue, WANG Weiguan, HOU Xi. Research on operation-maintenance-patrol-inspection system of yarn package dyeing latch locking robot based on augmented reality technology [J]. Journal of Textile Research, 2022, 43(09): 34-40.
[10] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
[11] WANG Jun, SHI Qianqian, LI Ling, ZHANG Yuze. Research progress of dual-feed-opening rotor spinning technology [J]. Journal of Textile Research, 2022, 43(08): 12-20.
[12] MA Xunming, LI Zhiyi, LÜ Guanglei, CHEN Yongjie. Kinematic characteristics of new piezoelectric actuator for yarn gripper in looms [J]. Journal of Textile Research, 2022, 43(08): 176-182.
[13] GUO Mingrui, GAO Weidong. Method and characteristics of section colored slub yarns spun by two-channel ring spinning based on single-zone drafting [J]. Journal of Textile Research, 2022, 43(08): 21-26.
[14] ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33.
[15] LIU Jiao, CHEN Shaojuan, WU Shaohua. Preparation and properties of silk fibroin/poly(l-lactic acid) nanofiber yarns-based tendon patches [J]. Journal of Textile Research, 2022, 43(08): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .