Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (09): 223-231.doi: 10.13475/j.fzxb.20220401302
• Comprehensive Review • Previous Articles Next Articles
HE Kaijun1, SHEN Jiajia2(), LIU Guojin3
CLC Number:
[1] |
ZHONG J, LIU X W, WEI D X, et al. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM[J]. International Journal of Biological Macromolecules, 2015, 76:195-202.
doi: 10.1016/j.ijbiomac.2015.02.045 pmid: 25748848 |
[2] |
VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8-9): 991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013 pmid: 19543442 |
[3] |
ZHANG Y Q, WANG Y J, WANG H Y, et al. Highly efficient processing of silk fibroin nanoparticle-lasparaginase bioconjugates and their characterization as a drug delivery system[J]. Soft Matter, 2011, 7(20): 9728-9736.
doi: 10.1039/c0sm01332c |
[4] |
KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
doi: 10.1038/nature07719 |
[5] |
BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
doi: 10.1021/nl0731872 pmid: 18284217 |
[6] |
LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887):385-388.
doi: 10.1126/science.1157996 pmid: 18635798 |
[7] |
ZHU Y W, MURALI S S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applic-ations[J]. Advanced Materials, 2010, 22(46):3906-3924.
doi: 10.1002/adma.v22:35 |
[8] | PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015. DOI: 10.1038/ncomms6716. |
[9] |
MOLINA J, FEMANDEZ J, INES J C, et al. Electrochemical characterization of reduced graphene oxide-coated polyester fabrics[J]. Electrochimica Acta, 2013, 93: 44-52.
doi: 10.1016/j.electacta.2013.01.071 |
[10] |
YE C, REN J, WANG Y L, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles[J]. Matter, 2019, 1(5): 1411-1425.
doi: 10.1016/j.matt.2019.07.016 |
[11] | WANG Y, GUO J, ZHOU L, et al. Design, fabrication, and function of silk-based nano-materials[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201805305. |
[12] |
WANG Q, WANG C, ZHANG M, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Letters, 2016, 16(10): 6695-6700.
pmid: 27623222 |
[13] |
ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3): 401-416.
doi: 10.1016/s0142-9612(02)00353-8 pmid: 12423595 |
[14] |
ROCKWOOD D N, PREDA R C, YUCEL T, et al. Materials fabrication from bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10): 1612-1631.
doi: 10.1038/nprot.2011.379 pmid: 21959241 |
[15] |
LING S, LI C, JIN K, et al. Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices[J]. Advanced Materials, 2016, 28(35):7783-7790.
doi: 10.1002/adma.v28.35 |
[16] |
YUE X, FENG Z, WU H, et al. A novel route to prepare dry-spun silk fibers from CaCl2-formic acid solution[J]. Materials Letters, 2014, 128:175-178.
doi: 10.1016/j.matlet.2014.04.116 |
[17] | ZHENG K, ZHONG J, QI Z, et al. Isolation of silk mesostructures for electronic and environmental applications[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201806380. |
[18] |
TANSIL N C, KOH L D, HAN M Y. Functional silk: colored and luminescent[J]. Advanced Materials, 2012, 24:1388-1397.
doi: 10.1002/adma.v24.11 |
[19] |
LU Z, MAO C, MENG M, et al. Fabrication of CeO2 nanoparticlemodified silk for UV protection and antibacterial applications[J]. Journal of Colloid and Interface Science, 2014, 435:8-14.
doi: 10.1016/j.jcis.2014.08.015 |
[20] | WANG X, GAO W, XU S, et al. Luminescent fibers: in situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity[J]. Chemial Engineering Journal, 2012, 210:585-589. |
[21] |
ZHANG P, LAN J, WANG Y, et al. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters[J]. Biomaterials, 2015, 36:26-32.
doi: 10.1016/j.biomaterials.2014.08.026 pmid: 25308521 |
[22] |
FERNANDES J, NICODEMO D, OLIVEIRA J E, et al. Enhanced silk performance by enriching the silkworm diet with bordeaux mixture[J]. Journal of Materials Science, 2017, 52: 2684-2693.
doi: 10.1007/s10853-016-0559-3 |
[23] |
WU G H, SONG P, ZHANG D Y, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles[J]. International Journal of Biological Macromolecules, 2017, 104: 533-538.
doi: S0141-8130(16)32887-2 pmid: 28625835 |
[24] |
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228-240.
doi: 10.1039/b917103g pmid: 20023850 |
[25] |
LU Z, MAO C, ZHANG H. Highly conductive graphene-coated silk fabricated via a repeated coating-reduction approach[J]. Journal of Materials Chemistry C, 2015, 3(17): 4265-4268.
doi: 10.1039/C5TC00917K |
[26] |
CAO J L, WANG C X. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method[J]. Applied Surface Science, 2017, 405(1): 380-388.
doi: 10.1016/j.apsusc.2017.02.017 |
[27] |
ZHANG X, LICON A L, HARRIS T I, et al. Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene[J]. ACS Omega, 2019, 4(3): 4832-4838.
doi: 10.1021/acsomega.8b03566 pmid: 31459667 |
[28] |
CHENG L, ZHAO H P, HUANG H M, et al. Quantum dots-reinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence[J]. Journal of Materials Science, 2019, 54(13): 9945-9957.
doi: 10.1007/s10853-019-03469-w |
[29] | ZHOU B, WANG H, ZHOU H, et al. Natural flat cocoon materials constructed by eri silkworm with high strength and excellent anti-ultraviolet performance[J]. Journal of Engineered Fibers and Fabrics, 2020. DOI: 10.1177/1558925020978652. |
[30] |
MA L, AKURUGU M A, ANDOH V, et al. Intrinsically reinforced silks obtained by incorporation of graphene quantum dots into silkworms[J]. Science China Materials, 2019, 62(2): 245-255.
doi: 10.1007/s40843-018-9307-7 |
[31] |
LU W, LU C, LI Y, et al. Green fabrication of porous silk fibroin/graphene oxide hybrid scaffolds for bone tissue engineering[J]. RSC Advances, 2015, 5(96):78660-78668.
doi: 10.1039/C5RA12173F |
[32] | CAO C, LIN Z, CHENG Q, et al. Strong reduced graphene oxide coated bombyx mori silk[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202102923. |
[33] |
SONG J C, XU S J, CHEN T, et al. Preparation of graphene oxide-coated silk fibers through HBPAA [a molecular glue]-induced layer-by-layer self-assembly[J]. Journal of the Iranian Chemical Society, 2018, 15(1): 101-109.
doi: 10.1007/s13738-017-1213-y |
[34] |
JI Y M, CHEN G Q, XING T L. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide[J]. Applied Surface Science, 2019, 474: 203-210.
doi: 10.1016/j.apsusc.2018.03.120 |
[35] | LIU Z L, LI Z, CHENG L, et al. Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application[J]. Advanced Electronic Materials, 2019. DOI: 10.1002/aelm.201800648. |
[36] | SONG X, LIU X T, PENG Y X, et al. A graphene-coated silk-spandex fabric strain sensor for human movement monitoring and recognition[J]. Nanotechnology, 2021. DOI: 10.1088/1361-6528/abe788. |
[37] | BHATTACHARJEE S, MACINTYRE C R, BAHL P, et al. Reduced graphene oxide and nanoparticles incorporated durable electroconductive silk fabrics[J]. Advanced Materials Interfaces, 2020. DOI: 10.1002/admi.202000814. |
[38] |
JUNG W T, JANG H S, JEON J W, et al. Effect of oxygen functional groups in reduced graphene oxide coated silk electronic textiles for enhancement of NO2 gas-sensing performance[J]. ACS Omega, 2021, 6: 27080-27088.
doi: 10.1021/acsomega.1c03658 |
[39] |
LI B T, XIAO G, LIU F, et al. A flexible humidity sensor based on silk fabrics for human respiration monitoring[J]. Journal of Materials Chemistry C, 2018, 6(16): 4549-4554.
doi: 10.1039/C8TC00238J |
[40] | JI Y M, LI Y Z, CHEN G Q, et al. Fire-resistant and highly electrically conductive silk fabrics fabricated with reduced graphene oxide via dry-coating[J]. Materials & Design, 2017, 133: 528-535. |
[41] |
SAHITO I A, SUN K C, ARBAB A A, et al. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide[J]. Carbohydrate Polymers, 2015, 130: 299-306.
doi: 10.1016/j.carbpol.2015.05.010 pmid: 26076630 |
[42] |
MOLINAAB J, FERNANDEZ J, FERNANDES M, et al. Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide[J]. Synthetic Metals, 2015, 202: 110-122.
doi: 10.1016/j.synthmet.2015.01.023 |
[43] |
CAO J L, WANG C X. Highly conductive and flexible silk fabric via electrostatic self assemble between reduced graphene oxide and polyaniline[J]. Organic Electronics, 2018, 55: 26-34.
doi: 10.1016/j.orgel.2017.12.016 |
[44] | QU J, DAI M, YE W, et al. Study on the effect of graphene oxide (GO) feeding on silk properties based on segmented precise measurement[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021. DOI: 10.1016/j.jmbbm.2020.104147. |
[45] | WANG S, NING H M, HU N, et al. Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection[J]. Advanced Materials Interfaces, 2019. DOI: 10.1002/admi.201901507. |
[46] |
STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles: a critical review[J]. Sensors, 2014, 14(7): 11957-11992.
doi: 10.3390/s140711957 pmid: 25004153 |
[47] |
QIU Q, ZHU M, LI Z, et al. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics[J]. Nano Energy, 2019, 58: 750-758.
doi: 10.1016/j.nanoen.2019.02.010 |
[48] |
MOLINA J, FERNANDEZ J, INES J C, et al. Electrochemical characterization of reduced graphene oxide-coated polyester fabrics[J]. Electrochimica Acta, 2013, 93: 44-52.
doi: 10.1016/j.electacta.2013.01.071 |
[49] |
DIN M I, REHAN R. Synthesis, characterization, and applications of copper nanoparticles[J]. Analytical Letters, 2017, 50(1): 50-62.
doi: 10.1080/00032719.2016.1172081 |
[50] |
QU L, TIAN M, HU X, et al. Functionalization of cotton fabric at low graphene nanoplate content for ultrastrong ultraviolet blocking[J]. Carbon, 2014, 80: 565-574.
doi: 10.1016/j.carbon.2014.08.097 |
[51] |
HU W B, PENG C, LUO W J, et al. Graphene based antibacterial paper[J]. ACS Nano, 2010, 4: 4317-4323.
doi: 10.1021/nn101097v |
[52] |
TU T, LÜ M, XIU P, et al. Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8: 594-601.
doi: 10.1038/nnano.2013.125 pmid: 23832191 |
[53] | WANG S D, WANG K, MA Q, et al. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets[J]. Materials Today Communi cations, 2020. DOI: 10.1016/j.mtcomm.2020.100893. |
[54] |
BORINI S, WHITE R, WEI D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166-11173.
doi: 10.1021/nn404889b pmid: 24206232 |
[55] | SONG Y, LIN Z, KONG L, et al. Meso-functionalization of silk fibroin by upconversion fluorescence and near infrared in vivo biosensing[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201700628. |
[56] | MIN K, KIM S, KIM C G, et al. Colored and fluorescent nanofibrous silk as a physically transient chemosensor and vitamin deliverer[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-05842-8. |
[57] | YAO Y, CHEN X D, GUO H H, et al. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure[J]. Sensors & Actuators: B. Chemical, 2012, 161(1): 1053-1058. |
[58] |
FIRAT G, ALAR A, JULIA R, et al. Paper-based electrical respiration sensor[J]. Angewandte Chemie International Edition, 2016, 55(19): 5727-5732.
doi: 10.1002/anie.v55.19 |
[59] |
KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151:362-367.
doi: 10.1016/j.envpol.2007.06.012 pmid: 17646040 |
[60] | VARGHESE S S, LONKAR S, SINGH K K, et al. Recent advances in graphene based gas sensors[J]. Sensors & Actuators: B. Chemical, 2015, 218: 160-183. |
[61] |
CHOI Y R, YOON Y G, CHOI K S, et al. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing[J]. Carbon, 2015, 91: 178-187.
doi: 10.1016/j.carbon.2015.04.082 |
[62] |
SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6: 652-655.
doi: 10.1038/nmat1967 pmid: 17660825 |
[63] |
SHI L H, HUANG Y, GAO L, et al. Application of graphene in coating silk fibril for tunable infrared absorption[J]. Journal of Electronic Materials, 2021, 50(2): 592-597.
doi: 10.1007/s11664-020-08589-7 |
[1] | YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10. |
[2] | YAO Shuangshuang, FU Shaoju, ZHANG Peihua, SUN Xiuli. Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation [J]. Journal of Textile Research, 2023, 44(09): 11-19. |
[3] | LUO Yuanze, DAI Mengnan, LI Meng, YU Yangxiao, WANG Jiannan. Application of silk fibroin-based biomaterials for drug delivery [J]. Journal of Textile Research, 2023, 44(09): 213-222. |
[4] | LIAN Dandan, WANG Lei, YANG Yaru, YIN Lixin, GE Chao, LU Jianjun. Preparation and properties of polyphenylene sulfide composite fiber for clothing [J]. Journal of Textile Research, 2023, 44(08): 1-8. |
[5] | CHEN Lu, WU Mengjin, JIA Lixia, YAN Ruosi. Analysis of interlayer damage acoustic emission characteristics of oxygen plasma modified ultra-high molecular weight polyethylene fiber composite materials [J]. Journal of Textile Research, 2023, 44(07): 116-125. |
[6] | DI Chunqiu, GUO Jing, GUAN Fucheng, XIANG Yulong, SHAN Jicheng. Preparation and characterization of phase change fibers of bimetal ion crosslinked alginate composites [J]. Journal of Textile Research, 2023, 44(05): 54-62. |
[7] | XIA Yu, YAO Juming, ZHOU Jie, MAO Menghui, ZHANG Yumei, YAO Yongbo. Preparation and properties of poly(butylene succinate)/silk sericin blend fiber [J]. Journal of Textile Research, 2023, 44(04): 1-7. |
[8] | GE Jiahui, MAO Zhiping, ZHANG Linping, ZHONG Yi, SUI Xiaofeng, XU Hong. Preparation and properties of functional cotton knitwear modified by two-dimensional titanium carbide [J]. Journal of Textile Research, 2023, 44(04): 132-138. |
[9] | CHEN Zhijie, JIANG Jikang, YU Yihao, FU Ye, WU Jindan, QI Dongming. Synthesis of silicon phosphorus modified calcium carbonate and its application in polyamide coating [J]. Journal of Textile Research, 2023, 44(04): 146-153. |
[10] | DENG Kehui, WEI Yilin. Virtual restoration of ancient costumes based on 3-D costume modeling technology [J]. Journal of Textile Research, 2023, 44(04): 179-186. |
[11] | XU Jianmei, PAN Lulu, WU Dongping, BIAN Xing'er, HU Yifeng, DAI Jiayang, WANG Yujing. Quantification and evaluation of carbon footprint based on traditional test and electronic test of raw silk [J]. Journal of Textile Research, 2023, 44(04): 38-45. |
[12] | LUO Hailin, SU Jian, JIN Wanhui, FU Yaqin. Process optimization of novel silk reeling technique [J]. Journal of Textile Research, 2023, 44(04): 46-54. |
[13] | WANG Shuanghua, WANG Dong, FU Shaohai, ZHONG Hongtian, DONG Peng. Preparation and properties of plasticized polyvinyl alcohol for sea-island fiber production [J]. Journal of Textile Research, 2023, 44(04): 8-15. |
[14] | QI Di, DING Hong, WANG Xiangrong. Preparation of catechin complex dye and its dyeing properties on silk fabric [J]. Journal of Textile Research, 2023, 44(03): 111-118. |
[15] | JIA Yanmei, YU Xuezhi. Dyeing properties and adsorption kinetics of oak leaf extract on tussah silk [J]. Journal of Textile Research, 2023, 44(03): 119-125. |
|