Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 27-33.doi: 10.13475/j.fzxb.20220402507

• Invited Column: Reserch on Spinning Technology • Previous Articles     Next Articles

Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns

ZOU Zhuanyong1(), MIAO Lulu1, DONG Zhengmei1,2, ZHENG Guoquan1, FU Na1   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2022-04-06 Revised:2022-05-19 Online:2022-08-15 Published:2022-08-24

Abstract:

In order to obtain higher strength air-jet vortex spun yarns, the viscose/polyester core-spun yarn was produced on air-jet vortex spinner by adding a polyester filament in the yarn formation process. The effects of core filament linear density and the yarn delivery speed on the strength, elongation, unevenness and hairiness of air-jet vortex spun viscose/polyester core-spun yarn were studied by statistical analysis method. The structure and appearance of core-spun yarns under different spinning conditions was compared and analyzed. The results show that the core filament linear density and yarn delivery speed have different effects on the performance of air-jet vortex viscose/polyester core-spun yarn. In general, either too high or too low yarn delivery speed is not conducive to improving yarn strength-elongation performance and improving yarn evenness for core-spun yarns obtained, and the increase of yarn delivery speed will increase the hairiness H value. In a certain range, increasing the core filament linear density is beneficial to improve the strength and elongation of the core-spun yarn, and the hairiness H value of the core-spun yarn decreases with the increase of the core-filament linear density. In addition, when the larger core-filament linear density and higher yarn delivery speed are selected in air-jet vortex spinning, there is more obvious exposure for the core filament in viscose/polyester core-spun yarn.

Key words: air-jet vortex spinning, core-spun yarn, spinning process, yarn property

CLC Number: 

  • TS101.2

Tab.1

Properties of polyester filament"

编号 长丝
种类
线密度/
tex
强力/
cN
断裂强度/
(cN·dtex–1)
断裂伸
长率/%
1 DTY 3.33 132 3.96 12.36
2 DTY 5.56 218 3.92 17.15
3 DTY 8.33 331 3.97 19.54

Tab.2

Factor level table"

水平 芯丝线密度X1/tex 纺纱速度X2/(m·min–1)
1 0 350
2 3.33 380
3 5.56 410
4 8.33

Tab.3

Full factor test table"

试样
编号
芯丝线
密度
X1/tex
纺纱
速度X2/
(m·min–1)
试样
编号
芯丝线
密度
X1/tex
纺纱
速度X2/
(m·min–1)
L1 0 350 L7 5.56 350
L2 0 380 L8 5.56 380
L3 0 410 L9 5.56 410
L4 3.33 350 L10 8.33 350
L5 3.33 380 L11 8.33 380
L6 3.33 410 L12 8.33 410

Tab.4

Process parameter setting"

试样
编号
集棉器
颜色
总牵伸
倍数
后牵伸
倍数
主牵伸
倍数
中区牵伸
倍数
L1 184 3 30 2
L2 184 3 30 2
L3 184 3 30 2
L4 淡黄 219 3 30 2.4
L5 淡黄 219 3 30 2.4
L6 淡黄 219 3 30 2.4
L7 243 3 30 2.7
L8 243 3 30 2.7
L9 243 3 30 2.7
L10 283 3.5 35 2.3
L11 283 3.5 35 2.3
L12 283 3.5 35 2.3

Tab.5

Yarn performance test results"

试样
编号
芯丝线
密度
X1/tex
纺纱速
X2/
(m·min–1)
断裂强
Y1/
(cN·tex–1)
断裂伸
长率
Y2/%
条干
CV值
Y3/%
毛羽
H
Y4
L1 0 350 12.17 10.54 12.50 3.48
L2 0 380 13.26 11.50 10.43 3.73
L3 0 410 13.30 11.37 12.62 4.03
L4 3.33 350 15.87 12.99 12.02 3.35
L5 3.33 380 16.27 13.09 12.19 3.58
L6 3.33 410 15.86 12.53 12.17 3.81
L7 5.56 350 18.58 13.73 13.21 3.44
L8 5.56 380 18.88 13.97 12.12 3.60
L9 5.56 410 18.53 13.87 12.19 3.76
L10 8.33 350 18.86 14.89 12.18 3.15
L11 8.33 380 18.84 14.59 11.69 3.31
L12 8.33 410 18.98 14.62 11.80 3.41

Tab.6

Regression analysis (p value) of response surface cubic model for different response variables"

项目 断裂强度
Y1
断裂伸长
Y2
条干CV值
Y3
毛羽H
Y4
常量 0.012 0.128 0.099 0.265
X1 0.020 0.135 0.254 0.226
X2 0.009 0.104 0.108 0.518
X 1 2 0.230 0.345 0.962 0.028
X 2 2 0.010 0.110 0.107 0.285
X1X2 0.027 0.162 0.244 0.240
X 1 3 0.001 0.785 0.513 0.002
X 1 2X2 0.018 0.290 0.808 0.928
X1 X 2 2 0.036 0.185 0.235 0.193

Tab.7

Regression equation and R2 for different response variables"

纱线
性能
回归方程 R2
断裂
强度
Y1
Y1=88.5+13.98X1+0.517 3X2+0.090 7 X 1 20.000 656 X 2 20.065 6X1X20.032 64 X 1 3+0.000 654 X 1 2X2+0.000 077X1 X 2 2 0.999 6
断裂
伸长率
Y2
Y2=86.3+16.03X1+0.502X20.172 X 1 20.000 645 X 2 20.076 3X1X20.001 73 X 1 3+0.000 458 X 1 2X2+0.000 093X1 X 2 2 0.991 9
条干
CV值
Y3
Y3=25929.4X11.309X2+0.021 X 1 20.001 727 X 2 2+0.158X1X20.011 3 X 1 3+0.000 251 X 1 2X20.000 213X1 X 2 2 0.737 3
毛羽
H
Y4
Y4=4.240.901X10.012X2+0.046 7 X 1 2+0.000 028 X 2 2+0.004 54X1X20.004 169 X 1 3+0.000 003 X 1 2X20.000 007X1 X 2 2 0.998 5

Fig.1

Effect of core-filament linear density X1 and yarn delivery speed X2 on yarn breaking strength"

Fig.2

Effect of core-filament linear density X1 and yarn delivery speed X2 on yarn breaking elongation"

Fig.3

Effect of core-filament linear density X1 yarn delivery speed X2 on yarn evenness CV value"

Fig.4

Effect of core-filament linear density X1 and yarn delivery speed X2 on yarn hairiness H value"

Fig.5

SEM images of some representative air\|jet vortex spinning yarn samples"

[1] BEGUM H A, KHAN M K R, RAHMAN M M. An overview on spinning mechanism, yarn structure and advantageous characteristics of vortex spun yarn and fabric[J]. Advances in Applied Sciences, 2018, 3(5): 58-58.
doi: 10.11648/j.aas.20180305.11
[2] 吕林军, 赵连英, 赵沉沉, 等. 新型喷气涡流纺纱线的技术创新和发展趋势[J]. 纺织导报, 2018(8): 55- 57, 58-62.
LÜ Linjun, ZHAO Lianying, ZHAO Chenchen, et al. Technological innovation and development trend of new-type air jet vortex-spun yarn[J]. China Textile Leader, 2018(8): 55- 57, 58-62.
[3] ORTLEK H G. Influence of selected process variables on the mechanical properties of core-spun vortex yarns containing elastane[J]. Fibers and Textiles in Eastern Europe, 2006, 3 (57):42-44.
[4] ORTLEK H G, ULKU S. Effects of spandex and yarn counts on the properties of elastic core-spun yarns pro-duced on Murata vortex spinner[J]. Textile Research Journal, 2007, 77(6): 432-436.
doi: 10.1177/0040517507078022
[5] 刘艳斌, 刘俊芳, 宋海玲. 喷气涡流纺涤纶包芯纱的开发[J]. 棉纺织技术, 2012, 40(6): 46-48.
LIU Yanbin, LIU Junfang, SONG Hailing. Development of air-jet vortex spinning polyester core-spun yarn[J]. Cotton Textile Technology, 2012, 40(6): 46-48.
[6] PEI Z, ZHANG Y, CHEN G. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1): 113-118.
doi: 10.1177/0040517517736477
[7] PEI Z, CHEN G. Numerical investigation on the flow field of a modified vortex spinning system for producing core-spun yarns[J]. Textile Research Journal, 2019, 89(19/20): 4028-4045.
doi: 10.1177/0040517519826927
[8] PEI Z, WANG X, LI Z, et al. Effect of process and nozzle structural parameters on the wrapping quality of core-spun yarns produced on a modified vortex spinning system[J]. Textile Research Journal, 2021, 91(15/16): 1841-1856.
doi: 10.1177/0040517521989094
[9] DUTTA P, SUFIAN M A, HOSSAIN I. Effect of air pressure on the cotton/polyester blended vortex spun yarn properties in terms of uniform yarn count[C]//Proceedings of Online International Conference on Multidisciplinary Research & Development (ICMRD-2021). Akola: [s.n.], 2021:1-8.
[10] 姚江薇, 邹专勇, 闫琳琳, 等. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
YAO Jiangwei, ZOU Zhuanyong, YAN Linlin, et al. Prediction model on tensile strength of air jet vortex spinning yarn and its verification[J]. Journal of Textile Research, 2018, 39(10): 32-37.
[1] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[2] LI Hao, XING Mingjie, SUN Zhihao, WU Yao. Exploration of image-based testing method for yarn twist in air-jet vortex spinning [J]. Journal of Textile Research, 2021, 42(02): 60-64.
[3] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[4] WEI Yanhong, XIE Chunping, LIU Xinjin, SU Xuzhong, YIN Gaowei. Drafting mechanism and application of spun yarn produced by large diameter soft rubber-covered roll [J]. Journal of Textile Research, 2019, 40(10): 62-67.
[5] XU Duo, WEI Jiang, MEI Jianxiang, ZHANG Xinling, ZHANG Youqing, XU Weilin, LIU Keshuai. Properties of soft-spun viscose hard-twist yarn and fabric thereof [J]. Journal of Textile Research, 2019, 40(10): 48-55.
[6] AO Limin, TANG Wen, WANG Ailin. Appearance and performance of linen/colored polyester wrapping composite yarn [J]. Journal of Textile Research, 2019, 40(08): 40-47.
[7] HE Jian, PEI Zeguang, ZHOU Jian, XIONG Xiangzhang, LÜ Haichen. Online monitoring of formation process of vortex core-spun yarn containing metal wire [J]. Journal of Textile Research, 2019, 40(05): 136-143.
[8] SHANG Shanshan, YU Chongwen, YANG Jianping, QIAN Xixi. Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167.
[9] ZHAO Yangyang, XUE Yuan, LIU Yuexing, ZHANG Guoqing. Formation mechanism of thick and thin sections of slub yarn and comparison of spinning process [J]. Journal of Textile Research, 2019, 40(03): 39-43.
[10] GU Yan, XUE Yuan, YANG Ruihua, GAO Weidong, LIU Yuexing, ZHANG Guoqing. Principle and properties of segment colored yarn spun by three-channel digital ring spinning [J]. Journal of Textile Research, 2019, 40(01): 46-51.
[11] FU Chiyu, WANG Cancan, HE Mantang, XIA Zhigang. Contact spinning based on simplified embeddable and locatable system and properties of spun ramie yarn [J]. Journal of Textile Research, 2019, 40(01): 40-45.
[12] . Structure and performances of double channel digital ring spinning melange yarn [J]. Journal of Textile Research, 2018, 39(11): 27-32.
[13] . Preparation of elastic radiation resistant textile based on double filament core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 52-57.
[14] . Fabrication, structure and properties of vortex core-spun yarn containing a metal wire [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 25-31.
[15] . Influence of filament distribution pattern on properties of composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 32-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!