Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 183-191.doi: 10.13475/j.fzxb.20220404509
• Comprehensive Review • Previous Articles Next Articles
LÜ Xiaoshuang1, LIU Liping2, YU Jianyong3, DING Bin3, LI Zhaoling1,3()
CLC Number:
[1] |
PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8 (5): 4689-4697.
doi: 10.1021/nn500441k pmid: 24592988 |
[2] |
WANG C, HWANG D, YU Z, et al. User-interactive electronic skin for instantaneous pressure visualiza-tion[J]. Nature Materials, 2013, 12 (10): 899-904.
doi: 10.1038/nmat3711 |
[3] | LOU M N, ABDALLA I, ZHU M M, et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12 (17): 19965-19973. |
[4] |
CHANG T H, LI K, YANG H, et al. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802418.
doi: 10.1002/adma.201802418 |
[5] |
YU J, HOU X, HE J, et al. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104437.
doi: 10.1016/j.nanoen.2019.104437 |
[6] |
ZHANG B, TANG Y, DAI R, et al. Breath-based human-machine interaction system using triboelectric nanogenerator[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103953.
doi: 10.1016/j.nanoen.2019.103953 |
[7] |
LI M, JIE Y, SHAO L H, et al. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator[J]. Nano Research, 2019, 12 (8): 1831-1835.
doi: 10.1007/s12274-019-2443-3 |
[8] |
AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (15): 14007-14021.
doi: 10.1007/s10854-019-01751-w |
[9] |
ZHOU Y, HE J, WANG H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-13281-8.
doi: 10.1038/s41598-017-13281-8 |
[10] |
MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105071.
doi: 10.1016/j.nanoen.2020.105071 |
[11] |
XU Z, WU C, LI F, et al. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers[J]. Nano Energy, 2018, 49: 274-282.
doi: 10.1016/j.nanoen.2018.04.059 |
[12] |
LI Z, ZHU M, SHEN J, et al. All fiber structured electronic skin with high elasticity and breathability[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201908411.
doi: 10.1002/adfm.201908411 |
[13] |
YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018.DOI: 10.1002/admt.201700241.
doi: 10.1002/admt.201700241 |
[14] |
PENG X, DONG K, YE C Y, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624.
doi: 10.1126/sciadv.aba9624 |
[15] |
CHENG Y, WU D, HAO S, et al. Highly stretchable triboelectric tactile sensor for electronic skin[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103907.
doi: 10.1016/j.nanoen.2019.103907 |
[16] |
QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on PDMS substrates[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202003155.
doi: 10.1002/adma.202003155 |
[17] |
GE J, SUN L, ZHANG F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2016, 28 (4): 722-728.
doi: 10.1002/adma.201504239 |
[18] |
MACDONALD W A. Engineered films for display technologies[J]. Journal of Materials Chemistry, 2004, 14 (1): 4-10.
doi: 10.1039/b310846p |
[19] |
GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52 (3): 523-533.
doi: 10.1021/acs.accounts.8b00500 pmid: 30767497 |
[20] |
NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.
doi: 10.1109/JPROC.2012.2190168 |
[21] |
RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28 (22): 4415-4440.
doi: 10.1002/adma.201505118 |
[22] |
NI H J, LIU J G, WANG Z H, et al. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 16-27.
doi: 10.1016/j.jiec.2015.03.013 |
[23] |
SOMEYA T, BAO Z, MALLIARAS G G. The rise of plastic bioelectronics[J]. Nature, 2016, 540 (7633): 379-385.
doi: 10.1038/nature21004 |
[24] | LIU Q, JIN L, ZHANG P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (8): 10623-10631. |
[25] |
YU J, HOU X, CUI M, et al. Skin-conformal BaTiO3/ecoflex-based piezoelectric nanogenerator for self-powered human motion monitoring[J]. Materials Letters, 2020. DOI: 10.1016/j.matlet.2020.127686.
doi: 10.1016/j.matlet.2020.127686 |
[26] |
QI D, LIU Z, LEOW W R, et al. Elastic substrates for stretchable devices[J]. MRS Bulletin, 2017, 42 (2): 103-107.
doi: 10.1557/mrs.2017.7 |
[27] | QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11 (43): 40716-40725. |
[28] |
ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability[J]. Nanoscale, 2016, 8 (24): 12105-12112.
doi: 10.1039/c6nr02678h pmid: 27250529 |
[29] |
GONG S, LAI D T H, SU B, et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials, 2015. DOI: 10.1002/aelm.201400063.
doi: 10.1002/aelm.201400063 |
[30] |
DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902549.
doi: 10.1002/adma.201902549 |
[31] | WANG Z, CUI H, LI S, et al. Facile approach to conductive polymer microelectrodes for flexible electronics[J]. ACS Applied Materials & Interfaces, 2021, 13 (18): 21661-21668. |
[32] | QI K, HE J, WANG H, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42951-42960. |
[33] |
HONDA W, HARADA S, ARIE T, et al. Wearable, uman-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques[J]. Advanced Functional Materials, 2014, 24 (22): 3299-3304.
doi: 10.1002/adfm.201303874 |
[34] |
CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016, 28 (22): 4203-4218.
doi: 10.1002/adma.201504150 |
[35] |
AHMED A, GUAN Y S, HASSAN I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105044.
doi: 10.1016/j.nanoen.2020.105044 |
[36] |
LI X, LIN Z H, CHENG G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano, 2014, 8(10): 10674-10681.
doi: 10.1021/nn504243j pmid: 25268317 |
[37] |
PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26 (16): 2514-2520.
doi: 10.1002/adma.201305659 |
[38] |
AHN S, CHO Y, PARK S, et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.104932.
doi: 10.1016/j.nanoen.2020.104932 |
[39] | SANG M, WANG S, LIU S, et al. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection[J]. ACS Applied Materials & Interfaces, 2019, 11 (50): 47340-47349. |
[40] |
SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201870294.
doi: 10.1002/adma.201870294 |
[41] |
ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019.DOI: 10.1038/s41467-019-09461-x.
doi: 10.1038/s41467-019-09461-x |
[42] |
ZHU M M, LOU M N, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2019.104429.
doi: 10.1016/j.nanoen.2019.104429 |
[43] |
WANG Y, ZHU M, WEI X, et al. A dual-mode electronic skin textile for pressure and temperature sensing[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.130599.
doi: 10.1016/j.cej.2021.130599 |
[44] |
BU T, XIAO T, YANG Z, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800066.
doi: 10.1002/adma.201800066 |
[45] |
DONG K, WU Z, DENG J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804944.
doi: 10.1002/adma.201804944 |
[46] |
ZHU M, WANG Y, LOU M, et al. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing[J]. Nano Energy, 2021.DOI: 10.1016/j.nanoen.2020.105669.
doi: 10.1016/j.nanoen.2020.105669 |
[47] |
PENG X, DONG K, NING C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202103559.
doi: 10.1002/adfm.202103559 |
[48] |
ZHU M, LOU M, YU J, et al. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105208.
doi: 10.1016/j.nanoen.2020.105208 |
[1] | ZHU Wenni, XU Runnan, HU Diefei, YAO Juming, MILITKY Jiri, KREMENAKOVA Dana, ZHU Guocheng. Simulation analysis of filtration characteristics of fiber materials based on random algorithm [J]. Journal of Textile Research, 2022, 43(09): 76-81. |
[2] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
[3] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20. |
[4] | . Preparation of flexible all-braiding triboelectric nanogenerator [J]. Journal of Textile Research, 2018, 39(09): 34-38. |
[5] | . High piezoelectric flexible electrospun zinc oxide/poly(vinylidene fluoride) composite fibrous membranes [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 1-6. |
[6] | . Friction resistance and anti-UV properties of electron beam evaporated deposited film on fabrics [J]. Journal of Textile Research, 2015, 36(04): 87-91. |
[7] | LIU Jianping;GAO Weidong. Culture composition of natural fibers for clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 99-101. |
[8] | YANG Wei-jun;GE Ming-qiao;LI Yong-gui;YU Tian-shi. Factors affecting anion-generating capacity of anion fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 88-91. |
|