Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 183-191.doi: 10.13475/j.fzxb.20220404509

• Comprehensive Review • Previous Articles     Next Articles

Fabrication and application research progress of fiber-based self-powered electronic skins

LÜ Xiaoshuang1, LIU Liping2, YU Jianyong3, DING Bin3, LI Zhaoling1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Qingdao Product Quality Testing Research Institute, Qingdao, Shandong 266061, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-04-13 Revised:2022-07-05 Online:2022-10-15 Published:2022-10-28
  • Contact: LI Zhaoling E-mail:zli@dhu.edu.cn

Abstract:

This review introduces the categories, characteristics, and preparation processes for constructing materials with applications for electronic skins, from the perspective of composition structure of the electronic skins with tactile sensing capability. The compelling features of breathable fiber materials serving as substrate layer, electrode layer, and sensing layer in electronic skins were highlighted, in view of the poor air permeability of current dense film-based and rubber-based electronic skins that easily lead to itching during long-term wearing. The working mechanisms of piezoelectric and triboelectric electronic skins were introduced, which are not only able to achieve real-time pressure sensing response, but also able to harvest the ambient mechanical energy and convert it into electricity to power themselves. These are conducive to the fabrication of miniatured, lightweight, and flexible wearable devices. The research progresses in fiber-based self-powered electronic skins in the fields of motion monitoring and medical detection were comprehensively summarized in terms of preparation methods, performance characterizations, and practical applications. The existing challenges and future development directions of fiber-based self-powered electronic skins were extensively discussed.

Key words: electronic skin, fiber material, self-powered, piezoelectricity, triboelectricity, smart fiber

CLC Number: 

  • TP212

Tab.1

Classification and comparison of conductive electrode layers"

导电电极层 代表材料 优点 缺点
金属 Au、Ag、Cu、Al及其纳米线、纳米棒等 高导电率、机械稳定性好、易于加工 柔性差、易于氧化和生锈
碳材料 CB、石墨烯、rGO、CNTs 高导电率、纳米多孔结构、机械稳定性好 溶液分散性差、结构不易控制
导电聚合物 PEDOT、PEDOT:PSS、PANI、PPy 良好的柔性、易于溶液加工处理 成本高、导电率低、稳定性差

Tab.2

Classification and comparison of active sensing layers"

传感层 分类 代表材料 优点 缺点
压电材料 压电陶瓷 BTO、ZnO、PZT 压电常数高、
强度高、化学惰性
柔性差、硬而脆 选材单一、能量
转化效率低
压电聚合物 PVDF、P(VDF-TrFE) 柔性好、易于加工 压电常数小
摩擦电材料 摩擦电正性材料 乙基纤维素、聚酰胺 选材范围广、能量转化效率高 灵敏度低
摩擦电负性材料 PTFE、PVDF
PDMS

Fig.1

Triboelectric series of common used materials"

Fig.2

Working mechanism of piezoelectric sensing"

Fig.3

Fiber-based piezoelectric electronic skins. (a) Sandwich-structured electronic skin and core-shell piezoelectric fiber; (b) Structural design and optical photograph of dual-modal piezoelectric electronic skin"

Fig.4

Working mechanism of triboelectric sensing"

Fig.5

Fiber-based triboelectric electronic skins. (a) Washable and highly stretchable electronic skin with silver-coated polyamide yarn; (b) All-nanofiber structured breathable electronic skin; (c) Transparent and antibacterial electronic skin constructed with conductive composite nanofibrous membranes; (d) Biodegradable and antibacterial electronic skin fabricated with nanofibers;(e) Highly sensitive electronic skin for respiratory monitoring"

Fig.6

Fiber-based piezoelectric and triboelectric hybrid electronic skin"

[1] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8 (5): 4689-4697.
doi: 10.1021/nn500441k pmid: 24592988
[2] WANG C, HWANG D, YU Z, et al. User-interactive electronic skin for instantaneous pressure visualiza-tion[J]. Nature Materials, 2013, 12 (10): 899-904.
doi: 10.1038/nmat3711
[3] LOU M N, ABDALLA I, ZHU M M, et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12 (17): 19965-19973.
[4] CHANG T H, LI K, YANG H, et al. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802418.
doi: 10.1002/adma.201802418
[5] YU J, HOU X, HE J, et al. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104437.
doi: 10.1016/j.nanoen.2019.104437
[6] ZHANG B, TANG Y, DAI R, et al. Breath-based human-machine interaction system using triboelectric nanogenerator[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103953.
doi: 10.1016/j.nanoen.2019.103953
[7] LI M, JIE Y, SHAO L H, et al. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator[J]. Nano Research, 2019, 12 (8): 1831-1835.
doi: 10.1007/s12274-019-2443-3
[8] AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (15): 14007-14021.
doi: 10.1007/s10854-019-01751-w
[9] ZHOU Y, HE J, WANG H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-13281-8.
doi: 10.1038/s41598-017-13281-8
[10] MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105071.
doi: 10.1016/j.nanoen.2020.105071
[11] XU Z, WU C, LI F, et al. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers[J]. Nano Energy, 2018, 49: 274-282.
doi: 10.1016/j.nanoen.2018.04.059
[12] LI Z, ZHU M, SHEN J, et al. All fiber structured electronic skin with high elasticity and breathability[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201908411.
doi: 10.1002/adfm.201908411
[13] YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018.DOI: 10.1002/admt.201700241.
doi: 10.1002/admt.201700241
[14] PENG X, DONG K, YE C Y, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624.
doi: 10.1126/sciadv.aba9624
[15] CHENG Y, WU D, HAO S, et al. Highly stretchable triboelectric tactile sensor for electronic skin[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103907.
doi: 10.1016/j.nanoen.2019.103907
[16] QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on PDMS substrates[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202003155.
doi: 10.1002/adma.202003155
[17] GE J, SUN L, ZHANG F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2016, 28 (4): 722-728.
doi: 10.1002/adma.201504239
[18] MACDONALD W A. Engineered films for display technologies[J]. Journal of Materials Chemistry, 2004, 14 (1): 4-10.
doi: 10.1039/b310846p
[19] GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52 (3): 523-533.
doi: 10.1021/acs.accounts.8b00500 pmid: 30767497
[20] NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.
doi: 10.1109/JPROC.2012.2190168
[21] RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28 (22): 4415-4440.
doi: 10.1002/adma.201505118
[22] NI H J, LIU J G, WANG Z H, et al. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 16-27.
doi: 10.1016/j.jiec.2015.03.013
[23] SOMEYA T, BAO Z, MALLIARAS G G. The rise of plastic bioelectronics[J]. Nature, 2016, 540 (7633): 379-385.
doi: 10.1038/nature21004
[24] LIU Q, JIN L, ZHANG P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (8): 10623-10631.
[25] YU J, HOU X, CUI M, et al. Skin-conformal BaTiO3/ecoflex-based piezoelectric nanogenerator for self-powered human motion monitoring[J]. Materials Letters, 2020. DOI: 10.1016/j.matlet.2020.127686.
doi: 10.1016/j.matlet.2020.127686
[26] QI D, LIU Z, LEOW W R, et al. Elastic substrates for stretchable devices[J]. MRS Bulletin, 2017, 42 (2): 103-107.
doi: 10.1557/mrs.2017.7
[27] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11 (43): 40716-40725.
[28] ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability[J]. Nanoscale, 2016, 8 (24): 12105-12112.
doi: 10.1039/c6nr02678h pmid: 27250529
[29] GONG S, LAI D T H, SU B, et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials, 2015. DOI: 10.1002/aelm.201400063.
doi: 10.1002/aelm.201400063
[30] DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902549.
doi: 10.1002/adma.201902549
[31] WANG Z, CUI H, LI S, et al. Facile approach to conductive polymer microelectrodes for flexible electronics[J]. ACS Applied Materials & Interfaces, 2021, 13 (18): 21661-21668.
[32] QI K, HE J, WANG H, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42951-42960.
[33] HONDA W, HARADA S, ARIE T, et al. Wearable, uman-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques[J]. Advanced Functional Materials, 2014, 24 (22): 3299-3304.
doi: 10.1002/adfm.201303874
[34] CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016, 28 (22): 4203-4218.
doi: 10.1002/adma.201504150
[35] AHMED A, GUAN Y S, HASSAN I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105044.
doi: 10.1016/j.nanoen.2020.105044
[36] LI X, LIN Z H, CHENG G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano, 2014, 8(10): 10674-10681.
doi: 10.1021/nn504243j pmid: 25268317
[37] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26 (16): 2514-2520.
doi: 10.1002/adma.201305659
[38] AHN S, CHO Y, PARK S, et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.104932.
doi: 10.1016/j.nanoen.2020.104932
[39] SANG M, WANG S, LIU S, et al. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection[J]. ACS Applied Materials & Interfaces, 2019, 11 (50): 47340-47349.
[40] SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201870294.
doi: 10.1002/adma.201870294
[41] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019.DOI: 10.1038/s41467-019-09461-x.
doi: 10.1038/s41467-019-09461-x
[42] ZHU M M, LOU M N, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2019.104429.
doi: 10.1016/j.nanoen.2019.104429
[43] WANG Y, ZHU M, WEI X, et al. A dual-mode electronic skin textile for pressure and temperature sensing[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.130599.
doi: 10.1016/j.cej.2021.130599
[44] BU T, XIAO T, YANG Z, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800066.
doi: 10.1002/adma.201800066
[45] DONG K, WU Z, DENG J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804944.
doi: 10.1002/adma.201804944
[46] ZHU M, WANG Y, LOU M, et al. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing[J]. Nano Energy, 2021.DOI: 10.1016/j.nanoen.2020.105669.
doi: 10.1016/j.nanoen.2020.105669
[47] PENG X, DONG K, NING C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202103559.
doi: 10.1002/adfm.202103559
[48] ZHU M, LOU M, YU J, et al. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105208.
doi: 10.1016/j.nanoen.2020.105208
[1] ZHU Wenni, XU Runnan, HU Diefei, YAO Juming, MILITKY Jiri, KREMENAKOVA Dana, ZHU Guocheng. Simulation analysis of filtration characteristics of fiber materials based on random algorithm [J]. Journal of Textile Research, 2022, 43(09): 76-81.
[2] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[3] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[4] . Preparation of flexible all-braiding triboelectric nanogenerator [J]. Journal of Textile Research, 2018, 39(09): 34-38.
[5] . High piezoelectric flexible electrospun zinc oxide/poly(vinylidene fluoride) composite fibrous membranes [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 1-6.
[6] . Friction resistance and anti-UV properties of electron beam evaporated deposited film on fabrics [J]. Journal of Textile Research, 2015, 36(04): 87-91.
[7] LIU Jianping;GAO Weidong. Culture composition of natural fibers for clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 99-101.
[8] YANG Wei-jun;GE Ming-qiao;LI Yong-gui;YU Tian-shi. Factors affecting anion-generating capacity of anion fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!