Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (08): 225-233.doi: 10.13475/j.fzxb.20220405002
• Comprehensive Review • Previous Articles Next Articles
WANG Menglei, WANG Jing'an, GAO Weidong()
CLC Number:
[1] |
HE Zhenglei, XU Jie, TRAN Kim Phuc, et al. Modeling of textile manufacturing processes using intelligent techniques: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1/2): 39-67.
doi: 10.1007/s00170-021-07444-1 |
[2] |
TERCAN Hasan, MEISEN Tobias. Machine learning and deep learning based predictive quality in manufacturing: a systematic review[J]. Journal of Intelligent Manufacturing, 2022, 33(7): 1879-1905.
doi: 10.1007/s10845-022-01963-8 |
[3] | 李瑛. 基于HVI的计算机配棉优化的研究[D]. 西安: 西安工程大学, 2013:47-50. |
LI Ying. The optimization research of computer blending based on HVI[D]. Xi'an: Xi'an Polytechnic University, 2013:47-50. | |
[4] | 张洁, 徐楚桥, 汪俊亮, 等. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(9): 1-10. |
ZHANG Jie, XU Chuqiao, WANG Junliang, et al. Advancement in data-driven intelligent control system for roboticized textile production[J]. Journal of Textile Research, 2022, 43(9): 1-10.
doi: 10.1177/004051757304300101 |
|
[5] | 邱兆宝. 基于HVI数据的配棉优选模型及应用研究[J]. 棉纺织技术, 2012, 40(12): 14-17. |
QIU Zhaobao. Cotton assorting optimized model based on HVI data and its application[J]. Cotton Textile Technology, 2012, 40(12): 14-17. | |
[6] | 杨建国. 自动配棉系统在纺织企业和棉花现代物流体系中的应用研究[D]. 天津: 天津工业大学, 2017:22-23. |
YANG Jianguo. Application of automatic cotton blending system in textile enterprises and modern cotton logistics system[D]. Tianjin:Tiangong University, 2017:22-23. | |
[7] | 易文峰. 智能纺纱工艺信息系统研究与开发[D]. 南京: 东南大学, 2015:25-26. |
YI Wenfeng. Research and development of the spinning process intelligent information system[D]. Nanjing: Southeast University, 2015:25-26. | |
[8] | 严瑛, 李飞飞. 浅谈计算机配棉系统的发展与应用[J]. 棉纺织技术, 2014, 42(4): 13-16. |
YAN Ying, LI Feifei. Discussion on development and application of computer cotton assorting system[J]. Cotton Textile Technology, 2014, 42(4): 13-16. | |
[9] | 康强. 合理设置计算机配棉系统[J]. 电子设计工程, 2014, 22(14): 50-51. |
KANG Qiang. Reasonable set up the computer with cotton system[J]. Electronic Design Engineering, 2014, 22(14): 50-51. | |
[10] | 储才元, 凌导宏. 棉纤维性能和成纱质量间关系的研究[J]. 纺织学报, 1993, 14(7): 4-8. |
CHU Caiyuan, LING Daohong. Study on the relationship between cotton fiber properties and yarn quality[J]. Journal of Textile Research, 1993, 14(7): 4-8. | |
[11] | KRUPINCOVA G, GABRIELA. Yarn hairiness versus quality of cotton fibres[J]. Indian Journal of Fibre & Textile Research, 2013, 38(3): 223-229. |
[12] |
UREYEN M E, KADOGLU H. Regressional estimation of ring cotton yarn properties from HVI fiber pro-perties[J]. Textile Research Journal, 2006, 76(5): 360-366.
doi: 10.1177/0040517506062262 |
[13] |
DORAN E C, SAHIN C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines[J]. Textile Research Journal, 2020, 90(13/14): 1558-1580.
doi: 10.1177/0040517519896761 |
[14] | 王东平, 吴志刚. 基于灰色关联支持向量机回归的纱线质量预测[J]. 山东工业技术, 2019(9): 158-159. |
WANG Dongping, WU Zhigang. Yarn quality prediction based on grey relational support vector machine regression[J]. Shandong Industrial Technology, 2019(9): 158-159. | |
[15] | 项前, 杨建国, 程隆棣. 基于支持向量机的纱线质量预测[J]. 纺织学报, 2008, (4): 43-46. |
XIANG Qian, YANG Jianguo, CHENG Longdi. Yarn quality prediction by support vector machine method[J]. Journal of Textile Research, 2008, 29(4): 43-46. | |
[16] | 宋楚平, 蔡彬彬, 李少芹. 基于SVM的纱线生产工艺智能优化研究[J]. 毛纺科技, 2015, 43(7): 13-17. |
SONG Chuping, CAI Binbin, LI Shaoqin. Intelligent optimization study of yarn production processes based on SVM[J]. Wool Textile Journal, 2015, 43(7): 13-17. | |
[17] | 吕志军, 杨建国, 项前. 基于遗传算法参数优化的纱线质量预测技术[J]. 东华大学学报(自然科学版), 2012, 38(5): 519-523. |
LÜ Zhijun, YANG Jianguo, XIANG Qian. GA based parameters optimization on prediction method of yarn quality[J]. Journal of Donghua University(Natural Science), 2012, 38(5): 519-523. | |
[18] | ABAKAR K A A, YU C. Performance of SVM based on PUK kernel in comparison to SVM based on RBF kernel in prediction of yarn tenacity[J]. Indian Journal of Fibre & Textile Research, 2014, 39(1): 55-59. |
[19] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:97. |
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016:97. | |
[20] |
CAO W, WANG X, MING Z, et al. A review on neural networks with random weights[J]. Neurocomputing, 2018, 275: 278-287.
doi: 10.1016/j.neucom.2017.08.040 |
[21] |
MWASIAGI J I, HUANG X, WANG X. Performance of neural network algorithms during the prediction of yarn breaking elongation[J]. Fibers and Polymers, 2008, 9(1): 80-86.
doi: 10.1007/s12221-008-0013-5 |
[22] | 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(1): 52-56. |
ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network[J]. Journal of Textile Research, 2019, 40(1): 52-56. | |
[23] |
JIANG H, SONG J, ZHANG B, et al. Prediction of yarn unevenness based on BMNN[J]. Journal of Engineered Fibers and Fabrics, 2021. DOI:10.1177/15589250211037978.
doi: 10.1177/15589250211037978 |
[24] |
TURHAN Y, TOPRAKCI O. Comparison of high-volume instrument and advanced fiber information systems based on prediction performance of yarn properties using a radial basis function neural network[J]. Textile Research Journal, 2013, 83(2): 130-147.
doi: 10.1177/0040517512445334 |
[25] | 胡臻龙. 基于深度神经网络的纱线质量预测模型研究[D]. 上海: 东华大学, 2020:44-90. |
HU Zhenlong. Research on yarn quality prediction model based on deep neural network[D]. Shanghai: Donghua University, 2020:44-90. | |
[26] |
ZHANG B, SONG J, ZHAO S, et al. Prediction of yarn strength based on an expert weighted neural network optimized by particle swarm optimization[J]. Textile Research Journal, 2021, 91(23-24): 2911-2924.
doi: 10.1177/00405175211022619 |
[27] | 熊经纬, 杨建国, 徐兰. 基于PSO-BP神经网络的纱线质量预测[J]. 东华大学学报(自然科学版), 2015, 41(4): 498-502. |
XIONG Jingwei, YANG Jianguo, XU Lan. Combining the particle swarm optimization with BP neural network for yarn quality forecasting[J]. Journal of Donghua University(Natural Science), 2015, 41(4): 498-502. | |
[28] | 项前. 可重构的纺织品智能工艺设计与虚拟加工方法及应用研究[D]. 上海: 东华大学, 2011:121-128. |
XIANG Qian. Research and application on method of reconfigurable textile intelligent process planning and virtual machining[D]. Shanghai: Donghua University, 2011:121-128. | |
[29] | 王军. 基于复杂自适应Petri网的棉纺生产预报模型及其优化[D]. 上海: 东华大学, 2016:67-77. |
WANG Jun. Cotton spinning production forecast model and optimization based on complex adaptive petri net[D]. Shanghai: Donghua University, 2016:67-77. | |
[30] | 刘贵. 精毛纺织品虚拟加工中的预报与反演模型研究[D]. 上海: 东华大学, 2010:133-145. |
LIU Gui. Study on the prediction and deduction model used in the virtual manufacturing of the worsted textiles[D]. Shanghai: Donghua University, 2010:133-145. | |
[31] |
AMIN A E. A novel classification model for cotton yarn quality based on trained neural network using genetic algorithm[J]. Knowledge-Based Systems, 2013, 39: 124-132.
doi: 10.1016/j.knosys.2012.10.008 |
[32] |
SOLTANI P, HADAVANDI E. A monarch butterfly optimization-based neural network simulator for prediction of siro-spun yarn tenacity[J]. Soft Computing, 2019, 23(20): 10521-10535.
doi: 10.1007/s00500-018-3624-9 |
[33] |
HADAVANDI E, MOSTAFAYI S, SOLTANI P. A Grey Wolf Optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills[J]. Applied Soft Computing, 2018, 72: 1-13.
doi: 10.1016/j.asoc.2018.07.055 |
[34] | 马创涛. 面向数字化车间的棉纺质量自主控制与管理[D]. 西安: 西安工程大学, 2018:26-30. |
MA Chuangtao. Self-control and management of cotton spinning quality for digital workshop[D]. Xi'an: Xi'an Polytechnic University, 2018:26-30. | |
[35] |
MWASIAGI J I, HUANG X, WANG X. The use of hybrid algorithms to improve the performance of yarn parameters prediction models[J]. Fibers and Polymers, 2012, 13(9): 1201-1208.
doi: 10.1007/s12221-012-1201-x |
[36] | 丁志荣. 纺纱配料规则自动提取算法[J]. 纺织学报, 2006, 27(10): 39-42. |
DING Zhirong. Algorithm of automatically finding out regulation for fiber dosage[J]. Journal of Textile Research, 2006, 27(10): 39-42. | |
[37] | 丁志荣. 改进的方案组合配棉方法研究[J]. 纺织学报, 2005, 26(3): 38-40. |
DING Zhirong. Method research on improved schemes combination for cotton assorting[J]. Journal of Textile Research, 2005, 26(3): 38-40. | |
[38] | 丁志荣. 用于纺纱生产的优化排包方法: 201810830976.X[P]. 2020-07-31. |
DING Zhirong. Optimized packing method for spinning production: 201810830976.X[P]. 2020-07-31. | |
[39] | 杜兆芳, 刘小平, 韩江洪. 基于改进微分进化算法的优化配棉[J]. 纺织学报, 2011, 32(7): 35-39. |
DU Zhaofang, LIU Xiaoping, HAN Jianghong. Research on cotton blending optimization based on improved differential evolution algorithm[J]. Journal of Textile Research, 2011, 32(7): 35-39. | |
[40] | 孙婧. 智能配棉与纺纱质量预测系统的研究与开发[D]. 南京: 东南大学, 2012:36-37. |
SUN Jin, Research and development of intelligent cotton blending and spinning quality prediction system[D]. Nanjing: Southeast University, 2012:36-37. | |
[41] | 宋楚平, 李少芹. 应用改进遗传算法的自动配棉模型优化与应用[J]. 纺织学报, 2016, 37(9): 151-155. |
SONG Chuping, LI Shaoqin. Optimum and application of automatic cotton blending based on high volume instrument data by improved genetic algorithm[J]. Journal of Textile Research, 2016, 37(9): 151-155. | |
[42] | 张增强, 黄马壮. 粒子群算法在计算机自动配棉优化中的应用[J]. 纺织学报, 2011, 32(2): 44-47. |
ZHANG Zenqiang, HUANG Mazhuang. Optimizing computer automatic cotton distribution using particle swarm algorithm[J]. Journal of Textile Research, 2011, 32(2): 44-47. | |
[43] |
DAS S, GHOSH A. Cotton fibre-to-yarn engineering: a simulated annealing approach[J]. Fibres and Textiles in Eastern Europe, 2015, 23(3): 51-53.
doi: 10.5604/12303666.1152442 |
[44] | 陈怀忠, 何仁初, 史桂丽. 基于改进PSO算法的自动配棉工艺参数优化设计[J]. 纺织学报, 2014, 35(6): 142-147. |
CHEN Huaizhong, HE Renchu, SHI Guili. Parameter optimization design for automatic cotton assorting based on improved PSO algorithm[J]. Journal of Textile Research, 2014, 35(6): 142-147. | |
[45] | 易文峰, 周俊. 基于萤火虫-粒子群混合算法的配棉优化研究[J]. 工业控制计算机, 2014, 27(11): 14-16. |
YI Wenfeng, ZHOU Jun. Cotton-blending based on hybrid algorithm of glowworm swarm optimization and particle swarm optimization[J]. Industrial Control Computer, 2014, 27(11): 14-16. | |
[46] |
MAJUMDAR A, MAJUMDAR P K, SARKAR B. An investigation on yarn engineering using artificial neural networks[J]. Journal of The Textile Institute, 2006, 97(5): 429-434.
doi: 10.1533/joti.2006.0266 |
[1] | ZHOU Qihong, HAN Weilong, CHEN Peng, HONG Wei, CEN Junhao. Prediction of measuring error of bobbin winding density based on grey system theory [J]. Journal of Textile Research, 2023, 44(10): 60-67. |
[2] | WANG Zhongyu, SU Yun, WANG Yunyi. Development of personal comfort models based on machine learning and their application prospect in clothing engineering [J]. Journal of Textile Research, 2023, 44(05): 228-236. |
[3] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[4] | SUN Chunhong, DING Guangtai, FANG Kun. Cashmere and wool classification based on sparse dictionary learning [J]. Journal of Textile Research, 2022, 43(04): 28-32. |
[5] | MIAO Peiyuan, FANG Zhouqian, SUN Ting, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Primary color extraction method for brocade [J]. Journal of Textile Research, 2021, 42(09): 120-125. |
[6] | YANG Jingzhao, JIANG Xiuming, DONG Jiuzhi, CHEN Yunjun, MEI Baolong. Prediction method of integrated piercing pressure parameters based on machine learning [J]. Journal of Textile Research, 2019, 40(08): 157-163. |
[7] | ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56. |
[8] | . Warp knit fabric defect detection method based on optimal Gabor filters [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 48-54. |
|