Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (07): 103-109.doi: 10.13475/j.fzxb.20220405401
• Textile Engineering • Previous Articles Next Articles
FU Han1,2, HU Feng1,2(), GONG Jie1,2, YU Lianqing1,2
CLC Number:
[1] |
WEIMER D, SCHOLZ-REITER B, SHPITALNI M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection[J]. CIRP Annals, 2016, 65(1): 417-420.
doi: 10.1016/j.cirp.2016.04.072 |
[2] | 刘娆. 卷积神经网络在纺织品缺陷检测中的应用研究[D]. 西安: 西安工程大学, 2019: 35-45. |
LIU Xiao. The application of convolutional neural network in textile defect detection[D]. Xi'an: Xi'an Polytechnic University, 2019: 35-45. | |
[3] |
LI Yundong, ZHAO Weigang, PAN Jiahao. Deformable patterned fabric defectdetection with Fisher criterion-based deep learning[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(2): 1256-1264.
doi: 10.1109/TASE.2016.2520955 |
[4] |
MEI Shuang, YANG Hua, YIN Zhouping. An unsupervised learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277.
doi: 10.1109/TIM.2018.2795178 |
[5] | 余文勇, 张阳, 姚海明, 等. 基于轻量化重构网络的表面缺陷视觉检测[J]. 自动化学报, 2020, 48(9):2175-2186. |
YU Wenyong, ZHANG Yang, YAO Haiming, et al. Visual inspection of surface defects based on lightweight reconstruction network[J]. ACTA Automatica Sinica, 2020, 48(9):2175-2186. | |
[6] |
ZHANG D, SONG K, XU J, et al. An image-level weakly supervised segmentation method for no-service rail surface defect with size prior[J]. Mechanical Systems and Signal Processing, 2022, 165(15): 108334-108348.
doi: 10.1016/j.ymssp.2021.108334 |
[7] | 李剑. 基于无监督学习的木地板缺陷检测方法研究[D]. 北京: 北京交通大学, 2021: 40-45. |
LI Jian. Research on defect inspection of wooden floor based on unsupervised learning[D]. Beijing: Beijing Jiaotong University, 2021: 40-45. | |
[8] |
ZHAO Xinyu, WU Bin. Algorithm for real-time defect detection of micropipe inner surface[J]. Applied Optics, 2021, 60(29): 9167-9179.
doi: 10.1364/AO.438287 |
[9] | 张哲源. 基于生成对抗网络的机织物疵点检测研究[D]. 上海: 东华大学, 2022: 1-7. |
ZHANG Zheyuan. Research on woven fabric defect defection based on generative adversarial network[D]. Shanghai: Donghua University, 2022:1-7. | |
[10] |
HUANG R, DUAN B, ZHANG Y, et al. Priorguided GAN based interactive airplane engine damage image augmentation method[J]. Chinese Journal of Aeronautics, 2021, 35(10): 222-232.
doi: 10.1016/j.cja.2021.11.021 |
[11] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// HONOLULU H I. Conference on Computer Vision & Pattern Recognition. New York: IEEE, 2016:5967-5976. |
[12] |
LI Huan, TANG Jinglei. Dairy goat image generation based on improved self-attention generative adversarial networks[J]. IEEE Access, 2020, 8(99): 62448-62457.
doi: 10.1109/Access.6287639 |
[13] |
ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[J]. Computer Science, 2018. DOI: 10.48550/arXiv.1805.08318.
doi: 10.48550/arXiv.1805.08318 |
[14] | LIU X, QIAO Y, XIONG Y, et al. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation[J]. Science China Information Sciences, 2020, 63(4):77-92. |
[15] |
ZHAO Hang, GALLO Orazio, FROSIO Luri, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
doi: 10.1109/TCI.2016.2644865 |
[16] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861 |
[17] | 徐启永, 胡峰, 王传桐, 等. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(5): 125-131. |
XU Qiyong, HU Feng, WANG Chuantong, et al. Segmentation of fabric defect images based on improved frequenytuned salient algorithm[J]. Journal of Textile Research, 2018, 39(5): 125-131. | |
[18] |
MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[J]. Computer Science, 2015. DOI: 10.48550/arXiv.1511.05644.
doi: 10.48550/arXiv.1511.05644 |
[19] | ZHAO Z, LI B, DONG R, et al. A surface defect detection method based on positive samples[J]. PRICAI: Trends in Artificial Intelligence, 2018, 29(95): 473-481. |
[1] | YAN Benchao, PAN Ruru, ZHOU Jian, WANG Lei, WANG Xiaohu. Real-time detection of fabric defects based on use of improved Itti salient model [J]. Journal of Textile Research, 2023, 44(07): 95-102. |
[2] | LI Yang, PENG Laihu, LI Jianqiang, LIU Jianting, ZHENG Qiuyang, HU Xudong. Fabric defect detection based on deep-belief network [J]. Journal of Textile Research, 2023, 44(02): 143-150. |
[3] | WANG Bin, LI Min, LEI Chenglin, HE Ruhan. Research progress in fabric defect detection based on deep learning [J]. Journal of Textile Research, 2023, 44(01): 219-227. |
[4] | ZHENG Zhaolun, LU Yujun. Dual-algorithm for fabric defect detection based on singular value decomposition [J]. Journal of Textile Research, 2022, 43(11): 59-67. |
[5] | JIN Shoufeng, HOU Yize, JIAO Hang, ZHNAG Peng, LI Yutao. An improved AlexNet model for fleece fabric quality inspection [J]. Journal of Textile Research, 2022, 43(06): 133-139. |
[6] | LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206. |
[7] | ZHU Lei, REN Mengfan, PAN Yang, LI Botao. Fabric defect detection based on similarity location and superpixel segmentation [J]. Journal of Textile Research, 2020, 41(10): 58-66. |
[8] | ZHOU Wenming, ZHOU Jian, PAN Ruru. Yarn-dyed fabric defect detection based on context visual saliency [J]. Journal of Textile Research, 2020, 41(08): 39-44. |
[9] | YANG Enjun, LIAO Yihui, LIU Andong, YU Li. Detection for fabric defects based on low-rank decomposition [J]. Journal of Textile Research, 2020, 41(05): 72-78. |
[10] | LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57. |
[11] | JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51. |
[12] | ZHANG Huanhuan, MA Jinxiu, JING Junfeng, LI Pengfei. Fabric defect detection method based on improved fast weighted median filtering and K-means [J]. Journal of Textile Research, 2019, 40(12): 50-56. |
[13] | XIAO Zhitao, GUO Yongmin, GENG Lei, WU Jun, ZHANG Fang, WANG Wen, LIU Yanbei. Internal defect detection method for thin test pieces of woven laminated composites based on ultrasonic phased array [J]. Journal of Textile Research, 2019, 40(11): 81-87. |
[14] | ZHU Hao, DING Hui, SHANG Yuanyuan, SHAO Zhuhong. Defect detection algorithm for multiple texture hierarchical fusion fabric [J]. Journal of Textile Research, 2019, 40(06): 117-124. |
[15] | DU Shuai, LI Yueyang, WANG Mengtao, LUO Haichi, JIANG Gaoming. Fabric defect detection based on improved local adaptive contrast method [J]. Journal of Textile Research, 2019, 40(02): 38-44. |
|