Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 41-48.doi: 10.13475/j.fzxb.20220407908

• Invited Column: Textile Intelligent Manufacturing and Robotics • Previous Articles     Next Articles

Real-time dynamic scheduling for garment sewing process based on deep reinforcement learning

LIU Feng1, XU Jie1,2(), KE Wenbo3   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Advance Denim Co., Ltd., Foshan, Guangdong 528000, China
  • Received:2022-04-26 Revised:2022-05-31 Online:2022-09-15 Published:2022-09-26
  • Contact: XU Jie E-mail:jxu@wtu.edu.cn

Abstract:

The garment sewing process is prone to interference caused by dynamic events. With the objective of minimizing the completion cycle, a deep reinforcement learning-based real-time dynamic scheduling method for the garment sewing process was proposed for the dynamic events of real-time order arrival. A scheduling optimization model of garment sewing process was established, and the problem was transformed into a sequential decision problem based on Markov decision process. By defining state features, action set, reward function, exploration and exploitation strategy, combined with the DDQN algorithm to train a deep neural network to describe the state-action value, the most appropriate scheduling rule was selected at the decision node. Experiments show that for the sewing process of the front panel of jeans, the proposed method is 2.3% inferior to the genetic algorithm in achieving the scheduling goal, but the decision-making time is greatly reduced by 91.4%. The method is useful to achieve effective real-time response and ensure the efficiency and continuity of sewing production for the scheduling problem of dynamic order arrival.

Key words: garment sewing production, dynamic scheduling method, reinforcement learning method, deep neural network, smart manufacturing

CLC Number: 

  • TS941

Tab.1

Description of model parameters"

参数符号 符号说明
n 需要加工的服装件数
m 服装的加工工序数
xj j个缝制工序上同时并行工位的数量
Ji 需要加工的服装集合{J1,…, Ji,…, Jn}
Oi,j 服装Ji的第j个加工工序
Mj,k j个工序上的第k个并行工位
Ai 服装Ji加工任务的下达时间
Ci,j 服装Ji在工序j上加工结束的时间
ti,j,k 服装i在工序j的并行工位Mj,k的加工持续时间
Xi,j,k 决策变量,服装i在工序j加工时,是否处于并行工位Mj,k。如果是,Xi,j,k=1;否则,Xi,j,k=0
Yi,j,t 决策变量,t时刻服装Ji是否正在Oj工序上加工。如果是,Yi,j,t=1;否则,Yi,j,t=0
Fi,j,k,l 决策变量,服装Ji是否在Oj工序的Mj,k并行工位上的第l顺位加工。如果是,Fi,j,k,l=1;否则,Fi,j,k,l=0

Fig.1

Overall framework of real-time dynamic scheduling method for garment sewing process based on deep reinforcement learning"

Tab.2

Candidate actions set"

序号 动作代码 具体描述
1 SFPT 选择第1道工序加工时间最短的工件
2 LFPT 选择第1道工序加工时间最长的工件
3 SFPT/APT 选择第1道工序加工时间与所有工序总时间比值最小的工件
4 LFPT/APT 选择第1道工序加工时间与所有工序总时间比值最大的工件
5 SLPT 选择最后1道工序加工时间最短的工件
6 LLPT 选择最后1道工序加工时间最长的工件
7 SLPT/APT 选择最后1道工序加工时间与所有工序总时间比值最小的工件
8 LLPT/APT 选择最后1道工序加工时间与所有工序总时间比值最大的工件
9 SHPT 前一半工序时间最短
10 LHPT 前一半工序时间最长
11 SHPT/APT 前一半工序时间与所有工序总时间比值最小的工件
12 LHPT/APT 前一半工序时间与所有工序总时间比值最大的工件
13 SAPT 所有工序总时间最短
14 LAPT 所有工序总时间最长
15 Gupta 对每个工件计算斜度参数,即si= C m i n j { 1,2 , 3 , , m - 1 } ( t i , j + t i , j + 1 ),按照si的非减顺序排列各工件,选择si最小的工件。其中C= 1 , t i , m t i , 1 - 1 , ,i=1,2,…,n
16 NEH_KK1 计算ai= j = 1 m((m-1)(m-2)/2+m-j)ti,j
bi= j = 1 m((m-1)(m-2)/2+j-1)ti,j
i=1,2,…,n
按照min(ai,bi)非增顺序排列各工件,选择min(ai,bi)最大的工件

Tab.3

Framework of DDQN based training algorithm"

步骤 算法描述
1 初始化回放缓存记忆体D并设定其最大容量为M
2 初始化在线评估网络Q及其参数θ
3 初始化目标网络 Q ^并设定其参数 θ ^=θ
4 for eiter=1∶M:
5 建立初始状态s0(按本文3.1节所述方法)
6 更新ε值(按式(14))
7 设置done=False(done==False表示还有待加工服装未进入加工过程;done==True表示所有服装均进入加工过程)
8 while(done==False):
9 以1-ε的概率随机选择一个动作或者依据网络Q评估出各动作q值,并选择当前最优动作a(按式(13))
10 执行动作at得到新的状态st+1和回报rt,以及更新donet
11 将(st,at,rt,st+1,donet)存入D
12 D中以批量形式采样(si,ai,ri,si+1,donei)
13 更新目标值
y= r i d o n e i = = T r u e r i + γ · Q ^ ( s i + 1 , a r g m a x a Q ( s i + 1 , a ; θ ) ; θ ^ ) d o n e i = = F a l s e
14 更新Q的参数θ,使Q(si,ai)的值更接近y
15 每隔C步将参数θ赋予 θ ^

Tab.4

Sewing process of front pieces of jeans and processing time of different styles"

工序序号 工序内容 加工时间/s 设备(数量)
款1 款2 款3 款4 款5 款6 款7 款8
1 平车装表袋口 30 36 32 30 40 27 30 35 平缝机(1)
2 烫装表袋实样 30 30 30 30 30 30 30 30 烫台(1)
3 平车装表袋内外线 90 105 100 95 110 85 90 100 平缝机(3)
4 绷缝前袋布 36 43 40 40 45 32 36 40 绷缝机(1)
5 平缝袋布于前片上 33 40 35 33 45 30 33 35 平缝机(1)
6 车袋布底 60 60 60 60 60 60 60 60 平缝机(2)
7 双针车前袋口 50 60 55 55 65 45 50 55 双针机(2)
8 平车定前袋口 70 85 75 70 85 65 70 70 平缝机(2)
9 门襟黏衬 25 25 25 25 25 25 25 25 烫台(1)
10 三线车门襟、三线车前浪 50 60 55 55 65 48 53 60 三线缝边机(2)
11 双针车拉链 50 60 55 55 65 50 55 60 双针机(2)
12 平缝门襟于前中间暗边线 60 70 65 65 75 55 65 70 平缝机(2)
13 双针车门襟 30 35 33 35 40 25 35 35 双针机(1)
14 里襟三层合一 30 35 33 35 40 25 35 35 三线缝边机(1)
15 双针车封前浪 60 70 65 65 75 55 65 70 双针机(2)

Fig.2

Scheduling scheme. (a) Scheduling scheme of first 7 styles; (b) Schedule after insertion of style 8 task"

Fig.3

Station utilization during training"

[1] LI Xinyu, GAO Liang. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics, 2016, 174:93-110.
doi: 10.1016/j.ijpe.2016.01.016
[2] DAI Min, TANG Dunbing, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5):418-429.
doi: 10.1016/j.rcim.2013.04.001
[3] 郑立平, 郝忠孝. 遗传算法理论综述[J]. 计算机工程与应用, 2003(21): 50-53.
ZHENG Liping, HAO Zhongxiao. Review of genetic algorithm theory[J]. Computer Engineering and Applications, 2003(21): 50-53.
[4] 郑卫波, 周俊, 许正良. 基于遗传算法的服装企业计划调度建模与求解[J]. 江苏纺织, 2009(1):59-60.
ZHENG Weibo, ZHOU Jun, XU Zhengliang. Modeling and solving of scheduling of garment enterprise based on genetic algorithm[J]. Jiangsu Textile, 2009(1):59-60.
[5] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10):144-149.
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10):144-149.
[6] NAWAZ Muhammad, ENSCORE Emory, HAM Inyong. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95.
doi: 10.1016/0305-0483(83)90088-9
[7] FRAMINAN J M, GUPTA J N, LEISTEN R. A review and classification of heuristics for permutation flow-shop scheduling with makespan objective[J]. Journal of the Operational Research Society, 2004, 55(12): 1243-1255.
doi: 10.1057/palgrave.jors.2601784
[8] 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J/OL]. 计算机集成制造系统:1-31[2022-04-20]. http://kns.cnki.net/kcms/detail/11.5946.tp.20210227.1731.002.html.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J/OL]. Computer Integrated Manufacturing Systems:1-31[2022-04-20]. http://kns.cnki.net/kcms/detail/11.5946.tp.20210227.1731.002.html.
[9] LUO Shu. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020. DOI: 10.1016/j.asoc.2020.106208.
doi: 10.1016/j.asoc.2020.106208
[10] 孔松涛, 刘池池, 史勇, 等. 深度强化学习在智能制造中的应用展望综述[J]. 计算机工程与应用, 2021, 57(2):49-59.
doi: 10.3778/j.issn.1002-8331.2008-0431
KONG Songtao, LIU Chichi, SHI Yong, et al. Review of application prospect of deep reinforcement learning in intelligent manufacturing[J]. Computer Engineering and Applications, 2021, 57(2):49-59.
doi: 10.3778/j.issn.1002-8331.2008-0431
[11] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. London: MIT press, 2018: 119-133.
[12] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
doi: 10.1038/nature14236
[13] HASSELT Hado Van, GUEZ Arthur, SILVER David. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100.
[14] 肖鹏飞, 张超勇, 孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(1): 192-205.
XIAO Pengfei, ZHANG Chaoyong, MENG Leilei, et al. Non-permutation flow shop scheduling problem based on deep reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(1):192-205.
[15] HAN Baoan, YANG Jianjun. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020, 8: 186474-186495.
doi: 10.1109/ACCESS.2020.3029868
[1] ZHANG Jie, XU Chuqiao, WANG Junliang, ZHENG Xiaohu. Advancement in data-driven intelligent control system for roboticized textile production [J]. Journal of Textile Research, 2022, 43(09): 1-10.
[2] MAO Huimin, SUN Lei, TU Jiajia, SHI Weimin. Key technology for yarn automatic splicer [J]. Journal of Textile Research, 2022, 43(09): 21-26.
[3] GAO Xiaofei, QI Lizhe, SUN Yunquan. Design of shape-following manipulator for three-dimensional sewing of flexible fabrics [J]. Journal of Textile Research, 2022, 43(09): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!