Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 97-105.doi: 10.13475/j.fzxb.20220408509

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst

ZHOU Xiaoju, HU Zhenglong(), REN Yiming, XIE Landong   

  1. School of Electronic and Information Engineering, Hubei University of Science and Technology,Xianning, Hubei 437100, China
  • Received:2022-04-27 Revised:2022-07-15 Online:2022-10-15 Published:2022-10-28
  • Contact: HU Zhenglong E-mail:huzhenglong@hbust.edu.cn

Abstract:

In order to obtain a recyclable photocatalyst for efficient degradation of organic pollutants under visible light, TiO2 nanorod arrays were modified with Bi2MoO6 nanosheets by hydrothermal solvothermal two-step method to obtain Bi2MoO6/TiO2 composite. The morphology, structure, chemical element composition and optical properties of Bi2MoO6/TiO2 photocatalyst were analyzed, and the photoelectrochemical and photocatalytic properties of Bi2MoO6/TiO2 photocatalyst were tested with the help of electrochemical workstation in order to analyze the mechanism of enhanced photocatalytic activity. The results show that modification of TiO2 nanorod arrays by Bi2MoO6 with narrow gap broadens the spectral response range, promotes the effective separation and transfer of photogenerated carriers, and obtains significantly enhanced photocatalytic degradation efficiency of methylene blue. The energy band structure diagram shows that type II heterojunction is formed between TiO2 and Bi2MoO6, which promotes the separation and transfer of photogenerated electron holes. The synergistic effect between type II band structure of Bi2MoO6/TiO2 and the extended absorption of visible light is the internal mechanism for the improvement of photocatalytic properties.

Key words: printing and dyeing wastewater treatment, photocatalytic biodegradation, photo-degradation mechanism, solvothermal method, visible light catalyst

CLC Number: 

  • O649.4

Fig.1

XRD patterns of pristine TiO2/FTO, Bi2MoO6 and Bi2MoO6/TiO2 composites"

Fig.2

SEM images of pristine TiO2 anorod arrays (a), pure Bi2MoO6nanosheets (b), and Bi2MoO6/TiO2 composites(c)"

Fig.3

N2 adsorption-desorption isotherms(a), and pore volume curves(b) of TiO2, Bi2MoO6 and Bi2MoO6/TiO2 composites"

Fig.4

TEM images of TiO2 (a), Bi2MoO6(b), Bi2MoO6/TiO2(c), and HRTEM images of Bi2MoO6/TiO2 composites(d)"

Fig.5

XPS spectra of Bi2MoO6/TiO2 phtocatalytist. (a) Survey spectra; (b) Bi4f spectra; (c) Mo3d spectra;(d) Ti2p spectra; (e) O1s spectra"

Fig.6

UV-Vis absorption spectra(a) and band gap(b) of TiO2, Bi2MoO6, and Bi2MoO6/TiO2"

Fig.7

PL spectra of TiO2, Bi2MoO6, and Bi2MoO6/TiO2"

Fig.8

J-V curves(a), and photoconversion efficiencies(b) of TiO2, Bi2MoO6 and Bi2MoO6/TiO2heterostructrures"

Fig.9

Transient photocurrent response (a), and Nyquist plots of TiO2, Bi2MoO6 and Bi2MoO6/TiO2 heterostructrures (b)"

Fig.10

Mott-Schottky plots of pristine TiO2 and Bi2MoO6"

Fig.11

Photocatalytic degradation curve of Bi2MoO6/TiO2 heterostructures. (a)Photocatalytic degradation curve of methylene blue; (b)Repeated photocatalytic degradation activity of Bi2MoO6/TiO2; (c)Degradation effect of Bi2MoO6/TiO2 on methyl orange and methylene blue"

Fig.12

ESR signals of ·OH (a), and · O 2 - radicals(b) of Bi2MoO6/TiO2 photocatalysts"

Fig.13

Band structures of Bi2MoO6/TiO2 heterostructures and photocatalytic mechanism of organic dye degradation"

[1] 施敏慧, 李冰蕊, 王挺, 等. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
SHI Minhui, LI Bingrui, WANG Ting, et al. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastesater[J]. Journal of Textile Research, 2021, 42(12): 103-110.
[2] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018, 39(12): 78-83.
doi: 10.1177/004051756903900112
[3] YADAV H M, KIM J S, PAWAR S H. Developments in photocatalytic antibacterial activity of nano TiO2: a review[J]. Korean Journal of Chemical Engineering, 2016, 33: 1989-1998.
doi: 10.1007/s11814-016-0118-2
[4] GRABOWSKA E, RESZCZY N J, ZALESKA A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review[J]. Water Research, 2012, 46, 5453-5471.
[5] MOHAMED M A, JAFAR J, ZAIN M F M, et al. Concurrent growth, structural and photocatalytic properties of hybridized C, N co-doped TiO2 mixed phase over g-C3N4 nanostructured[J]. Scripta Materialia, 2018, 142: 143-147.
doi: 10.1016/j.scriptamat.2017.08.044
[6] SABER N B, MEZNI A, ALROOQI A, et al. Fabrication of efficient Au@TiO2/rGO heterojunction nanocomposite: boosted photocatalytic activity under ultraviolet and visible light irradiation[J]. Journal of Materials Research and Technology, 2021, 12: 2238-2246.
doi: 10.1016/j.jmrt.2021.03.109
[7] ISMAEL M. A review and recent advances in solar-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles[J]. Solar Energy, 2020, 211: 522-546.
doi: 10.1016/j.solener.2020.09.073
[8] FU Y, MAO Z P, ZHOU D, et al. Fabrication of Ni-doped PbTiO3-coated TiO2 nanorod arrays for improved photoelectrochemical performance[J]. Journal of Nanomaterials, 2019.DOI: 10.1155/2019/5924672.
doi: 10.1155/2019/5924672
[9] YU H, JIANG L, WANG H, et al. Photocatalysis: Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review[J]. Small, 2019. DOI: 10.1002/smll.201901008.
doi: 10.1002/smll.201901008
[10] PENG Y, LIU Q, ZHANG J, et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates[J]. Journal of Physical Chemistry C, 2018, 122: 3738-3747.
doi: 10.1021/acs.jpcc.7b11567
[11] TIAN G, CHEN Y, ZHAI R, et al. Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications[J]. Journal Materials Chemistry A, 2013, 1: 6961-6968.
doi: 10.1039/c3ta10511c
[12] LI J, LIU X, SUN Z, et al. Novel Bi2MoO6/TiO2 heterostructure microspheres for degradation of benzene series compound under visible light irradiation[J]. Journal of Colloid and Interface Science, 2016, 463: 145-153.
doi: 10.1016/j.jcis.2015.10.055
[13] ZHANG M, SHAO C, MU J, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. CrystEngComm, 2012. DOI: 10.1039/C1CE05974B.
doi: 10.1039/C1CE05974B
[14] SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2019.115916.
doi: 10.1016/j.seppur.2019.115916
[15] LINDGREN T, WANG H, BEERMANN N, et al. Aqueous photoelectrochemistry of hematite nanorod array[J]. Solar Energy Materials and Solar Cells, 2002, 71: 231-243.
doi: 10.1016/S0927-0248(01)00062-9
[16] GE M, CAO C, HUANG J, et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal Materials Chemistry A, 2016, 4: 6772-6801.
doi: 10.1039/C5TA09323F
[17] CHENG X, ZHANG Y, BI Y. Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays[J]. Nano Energy, 2019, 57: 542-548.
doi: 10.1016/j.nanoen.2018.12.079
[18] ZHANG D, HE S, LIN Z, et al. Preparation and photoelectrocatalytic performance of Bi2MoO6@CQDs/TiO2 nanotube array[J]. Journal of the Chinese Ceramic Society, 2021, 12: 4137-4143.
[19] TIAN J, HAO P, WEI N, et al. 3D Bi2MoO6nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectrochemistry performance[J]. ACS Catalysis, 2015, 5(8): 4530-4536.
doi: 10.1021/acscatal.5b00560
[20] LI Z Q, CHEN X T, XUE Z L. Bi2MoO6 microstructures: controllable synthesis, growth mechanism, and visible light driven, photocatalytic activities[J]. CrystEngComm, 2013, 15: 498-508.
doi: 10.1039/C2CE26260F
[21] YUNARTI R T, SAFITRI T N, DIMONTI L, et al. Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photo-degradation of methylene blue[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 110357.
doi: 10.1016/j.jpcs.2021.110357
[22] TAE W K, KYOUNG S C. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343: 990-994.
doi: 10.1126/science.1246913
[23] LI H, ZHANG T, PAN C, et al. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photo-catalytic activities[J]. Applied Surface Science, 2017, 391: 303-310.
doi: 10.1016/j.apsusc.2016.06.167
[24] CAI K, LV S, SONG L, et al. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation[J]. Journal of Solid State Chemistry, 2019, 269: 145-150.
doi: 10.1016/j.jssc.2018.09.027
[25] DINH C T, YEN H, KLEITZ F, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nano-spheres for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International, 2014, 53: 6618-6623.
doi: 10.1002/anie.201400966
[26] LI Q, LI L, LONG X, et al. Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation[J]. Optical Materials, 2021. DOI: 10.1016/j.optmat.2021.111260.
doi: 10.1016/j.optmat.2021.111260
[27] SUBRAMANIAN V, WOLF E, KAMAT P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration[J]. Journal of the American Chemical Society, 2004, 126(15): 4943- 4950.
pmid: 15080700
[28] YUS J, FERRARI B, SANCHEZ A J, et al. Understanding the effects of different microstructural contributions in the electrochemical response of Nickel-based semiconductor electrodes with 3D hierarchical networks shapes[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.135629.
doi: 10.1016/j.electacta.2020.135629
[29] ZHAO K, ZHAO S, GAO C, et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction[J]. Small, 2018. DOI: 10.1002/smll.201800762.
doi: 10.1002/smll.201800762
[30] SINGH S, SANGLE A L, WU T, et al. Growth of doped SrTiO3 ferroelectric nanoporous thin films and tuning of photoelectrochemical properties with switchable ferroelectric polarization[J]. ACS Applied Materials & Interfaces, 2019, 11: 45683-45691.
[31] HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry, 2022, 41: 2201007-2201013.
[32] ZUO G, WANG Y, TEO W L, et al. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021.DOI: 10.1016/j.apcatb.2021.120126.
doi: 10.1016/j.apcatb.2021.120126
[33] ZHOU T, ZHANG H, ZHANG X, et al. BiOI/Bi2O2CO3 two-dimensional hetero-nanostructures with boosting charge carrier separation behavior and enhanced visible light photocatalytic performance[J]. Journal of Physical Chemistry C, 2020, 124: 20294-20308.
doi: 10.1021/acs.jpcc.0c06833
[34] HU J, GONG Q, WANG Q, et al. Spherical Bi2MoO6/Bi2S3/MoS2n-p heterojunction with excellent visible-light photocatalytic reduction Cr(VI) activity[J]. Nanomaterials, 2020. DOI: 10.3390/nano10091813.
doi: 10.3390/nano10091813
[1] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[2] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[3] ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134.
[4] JIANG Wenwen, MO Huilin, FAN Tingyue, ZHAO Ziyao, REN Yu, WANG Chunxia, ZHANG Wei, ZANG Chuanfeng. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue [J]. Journal of Textile Research, 2021, 42(04): 107-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!