Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 97-105.doi: 10.13475/j.fzxb.20220408509
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
ZHOU Xiaoju, HU Zhenglong(), REN Yiming, XIE Landong
CLC Number:
[1] | 施敏慧, 李冰蕊, 王挺, 等. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
SHI Minhui, LI Bingrui, WANG Ting, et al. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastesater[J]. Journal of Textile Research, 2021, 42(12): 103-110. | |
[2] | 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83. |
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018, 39(12): 78-83.
doi: 10.1177/004051756903900112 |
|
[3] |
YADAV H M, KIM J S, PAWAR S H. Developments in photocatalytic antibacterial activity of nano TiO2: a review[J]. Korean Journal of Chemical Engineering, 2016, 33: 1989-1998.
doi: 10.1007/s11814-016-0118-2 |
[4] | GRABOWSKA E, RESZCZY N J, ZALESKA A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review[J]. Water Research, 2012, 46, 5453-5471. |
[5] |
MOHAMED M A, JAFAR J, ZAIN M F M, et al. Concurrent growth, structural and photocatalytic properties of hybridized C, N co-doped TiO2 mixed phase over g-C3N4 nanostructured[J]. Scripta Materialia, 2018, 142: 143-147.
doi: 10.1016/j.scriptamat.2017.08.044 |
[6] |
SABER N B, MEZNI A, ALROOQI A, et al. Fabrication of efficient Au@TiO2/rGO heterojunction nanocomposite: boosted photocatalytic activity under ultraviolet and visible light irradiation[J]. Journal of Materials Research and Technology, 2021, 12: 2238-2246.
doi: 10.1016/j.jmrt.2021.03.109 |
[7] |
ISMAEL M. A review and recent advances in solar-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles[J]. Solar Energy, 2020, 211: 522-546.
doi: 10.1016/j.solener.2020.09.073 |
[8] |
FU Y, MAO Z P, ZHOU D, et al. Fabrication of Ni-doped PbTiO3-coated TiO2 nanorod arrays for improved photoelectrochemical performance[J]. Journal of Nanomaterials, 2019.DOI: 10.1155/2019/5924672.
doi: 10.1155/2019/5924672 |
[9] |
YU H, JIANG L, WANG H, et al. Photocatalysis: Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review[J]. Small, 2019. DOI: 10.1002/smll.201901008.
doi: 10.1002/smll.201901008 |
[10] |
PENG Y, LIU Q, ZHANG J, et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates[J]. Journal of Physical Chemistry C, 2018, 122: 3738-3747.
doi: 10.1021/acs.jpcc.7b11567 |
[11] |
TIAN G, CHEN Y, ZHAI R, et al. Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications[J]. Journal Materials Chemistry A, 2013, 1: 6961-6968.
doi: 10.1039/c3ta10511c |
[12] |
LI J, LIU X, SUN Z, et al. Novel Bi2MoO6/TiO2 heterostructure microspheres for degradation of benzene series compound under visible light irradiation[J]. Journal of Colloid and Interface Science, 2016, 463: 145-153.
doi: 10.1016/j.jcis.2015.10.055 |
[13] |
ZHANG M, SHAO C, MU J, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. CrystEngComm, 2012. DOI: 10.1039/C1CE05974B.
doi: 10.1039/C1CE05974B |
[14] |
SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2019.115916.
doi: 10.1016/j.seppur.2019.115916 |
[15] |
LINDGREN T, WANG H, BEERMANN N, et al. Aqueous photoelectrochemistry of hematite nanorod array[J]. Solar Energy Materials and Solar Cells, 2002, 71: 231-243.
doi: 10.1016/S0927-0248(01)00062-9 |
[16] |
GE M, CAO C, HUANG J, et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal Materials Chemistry A, 2016, 4: 6772-6801.
doi: 10.1039/C5TA09323F |
[17] |
CHENG X, ZHANG Y, BI Y. Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays[J]. Nano Energy, 2019, 57: 542-548.
doi: 10.1016/j.nanoen.2018.12.079 |
[18] | ZHANG D, HE S, LIN Z, et al. Preparation and photoelectrocatalytic performance of Bi2MoO6@CQDs/TiO2 nanotube array[J]. Journal of the Chinese Ceramic Society, 2021, 12: 4137-4143. |
[19] |
TIAN J, HAO P, WEI N, et al. 3D Bi2MoO6nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectrochemistry performance[J]. ACS Catalysis, 2015, 5(8): 4530-4536.
doi: 10.1021/acscatal.5b00560 |
[20] |
LI Z Q, CHEN X T, XUE Z L. Bi2MoO6 microstructures: controllable synthesis, growth mechanism, and visible light driven, photocatalytic activities[J]. CrystEngComm, 2013, 15: 498-508.
doi: 10.1039/C2CE26260F |
[21] |
YUNARTI R T, SAFITRI T N, DIMONTI L, et al. Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photo-degradation of methylene blue[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 110357.
doi: 10.1016/j.jpcs.2021.110357 |
[22] |
TAE W K, KYOUNG S C. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343: 990-994.
doi: 10.1126/science.1246913 |
[23] |
LI H, ZHANG T, PAN C, et al. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photo-catalytic activities[J]. Applied Surface Science, 2017, 391: 303-310.
doi: 10.1016/j.apsusc.2016.06.167 |
[24] |
CAI K, LV S, SONG L, et al. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation[J]. Journal of Solid State Chemistry, 2019, 269: 145-150.
doi: 10.1016/j.jssc.2018.09.027 |
[25] |
DINH C T, YEN H, KLEITZ F, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nano-spheres for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International, 2014, 53: 6618-6623.
doi: 10.1002/anie.201400966 |
[26] |
LI Q, LI L, LONG X, et al. Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation[J]. Optical Materials, 2021. DOI: 10.1016/j.optmat.2021.111260.
doi: 10.1016/j.optmat.2021.111260 |
[27] |
SUBRAMANIAN V, WOLF E, KAMAT P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration[J]. Journal of the American Chemical Society, 2004, 126(15): 4943- 4950.
pmid: 15080700 |
[28] |
YUS J, FERRARI B, SANCHEZ A J, et al. Understanding the effects of different microstructural contributions in the electrochemical response of Nickel-based semiconductor electrodes with 3D hierarchical networks shapes[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.135629.
doi: 10.1016/j.electacta.2020.135629 |
[29] |
ZHAO K, ZHAO S, GAO C, et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction[J]. Small, 2018. DOI: 10.1002/smll.201800762.
doi: 10.1002/smll.201800762 |
[30] | SINGH S, SANGLE A L, WU T, et al. Growth of doped SrTiO3 ferroelectric nanoporous thin films and tuning of photoelectrochemical properties with switchable ferroelectric polarization[J]. ACS Applied Materials & Interfaces, 2019, 11: 45683-45691. |
[31] | HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry, 2022, 41: 2201007-2201013. |
[32] |
ZUO G, WANG Y, TEO W L, et al. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021.DOI: 10.1016/j.apcatb.2021.120126.
doi: 10.1016/j.apcatb.2021.120126 |
[33] |
ZHOU T, ZHANG H, ZHANG X, et al. BiOI/Bi2O2CO3 two-dimensional hetero-nanostructures with boosting charge carrier separation behavior and enhanced visible light photocatalytic performance[J]. Journal of Physical Chemistry C, 2020, 124: 20294-20308.
doi: 10.1021/acs.jpcc.0c06833 |
[34] |
HU J, GONG Q, WANG Q, et al. Spherical Bi2MoO6/Bi2S3/MoS2n-p heterojunction with excellent visible-light photocatalytic reduction Cr(VI) activity[J]. Nanomaterials, 2020. DOI: 10.3390/nano10091813.
doi: 10.3390/nano10091813 |
[1] | WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60. |
[2] | SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110. |
[3] | ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134. |
[4] | JIANG Wenwen, MO Huilin, FAN Tingyue, ZHAO Ziyao, REN Yu, WANG Chunxia, ZHANG Wei, ZANG Chuanfeng. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue [J]. Journal of Textile Research, 2021, 42(04): 107-113. |
|