Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 12-20.doi: 10.13475/j.fzxb.20220409609

• Invited Column: Reserch on Spinning Technology • Previous Articles     Next Articles

Research progress of dual-feed-opening rotor spinning technology

WANG Jun1,2(), SHI Qianqian1, LI Ling1, ZHANG Yuze1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2022-04-30 Revised:2022-06-17 Online:2022-08-15 Published:2022-08-24

Abstract:

Rotor spinning technology has been widely used for its advantages of high speed and high yield, but traditional rotor spinning is not suitable for making blended yarns from fibers with different fiber properties due to the configuration of single opening roller. In recent years, the dual-feed-opening (DFO) rotor spinning technology has provided a possibility for the development of such blended yarns. To this end, the development process of DFO rotor spinning technology was reviewed and summarized in this paper. The similarities and differences of the airflow field distribution in the spinning unit between DFO and the traditional rotor spinning were compared. The mixing and distribution of two independently fed fibers for making yarns was discussed. Reasons for the quality improvement of DFO rotor spun yarn and the characteristics of DFO yarn structure were pointed out. Furthermore, the progress of DFO rotor spinning technology in yarn product design and fabric development was also reviewed, and the future development prospects of this technology were prospected. It is pointed out that perfecting the DFO spinning unit and developing fancy yarns with changes in color and structure are the directions of its research and development.

Key words: spinning, rotor spinning, yarn structure, airflow filed distribution, spinning unit, fancy yarn

CLC Number: 

  • TS111.8

Fig.1

Comparison chart of conventional single opening rotor spinning system (a) and DFO rotor spinning system (b)"

Fig.2

Chart of geometric model(a) and meshed computational model(b) of conventional single opening and DFO rotor spinning systems"

Fig.3

Airflow velocity profiles in conventional single opening and DFO rotor spinning system"

Fig.4

Air pressure distributions in conventional single opening and DFO rotor spinning system. (a) Air pressure three\|dimensional distributed; (b) Air pressure distribution on plane along x\|direction"

Fig.5

Longitudinal morphology of two rotor spun yarns spun with two rotor spinning systems. (a) Conventional single opening rotor spun yarn; ( b) DFO rotor spun yarn"

Fig.6

Cross-sectional morphology of two rotor spun yarns spun with two rotor spinning systems. (a) Conventional single opening rotor spun yarn; (b) DFO rotor spun yarn"

Tab.1

Comparison of yarn properties of two rotor spun yarns with different blending ratios"

涤纶与
粘胶
混纺比
纱线
种类
断裂强度/
(cN·tex–1)
断裂
伸长
率/%
毛羽数
(≥3 mm)/
(根·(10 m)–1)
条干
不匀
率/%
20/80 双分梳 15.4 10.0 143 12.75
单分梳 13.4 9.2 198 14.63
40/60 双分梳 16.1 10.1 145 12.43
单分梳 13.8 9.7 223 13.96
50/50 双分梳 16.5 10.8 109 12.17
单分梳 14.1 10.4 178 14.01
60/40 双分梳 15.9 9.7 121 13.01
单分梳 13.8 9.8 210 14.74
80/20 双分梳 15.5 9.7 132 12.97
单分梳 13.2 8.9 197 14.32

Tab.1

Comparison of yarn properties of two rotor spun yarns with different linear density"

线密
度/tex
纱线
种类
断裂强度/
(cN·tex–1)
断裂
伸长
率/%
毛羽数
(≥3 mm)/
(根·(10 m)–1)
条干
不匀
率/%
30 双分梳 8.7 4.9 137 14.78
单分梳 7.3 4.7 162 16.54
35 双分梳 9.0 5.1 125 14.23
单分梳 7.4 5.0 183 15.82
40 双分梳 9.0 5.1 141 14.02
单分梳 7.8 5.5 178 15.63
45 双分梳 10.2 5.6 114 14.32
单分梳 8.7 5.5 153 16.74

Fig.7

Chart of fiber band(a) and division(b)"

Fig.8

Cross-sectional view SEM image of fiber band"

Fig.9

Proportion of polyester in each layer of fiber band. (a) Conventional single opening rotor spun yarn; (b) DFO rotor spun yarn"

Fig.10

Appearance images of blended yarn with different colored fibers. (a)Blue and white blended yarn; (b) Red, orange and white blended yarn"

Fig.11

Denim fabric made of DFO denim yarn"

[1] 高卫东. 棉纺织手册:下卷[M]. 北京: 中国纺织出版社, 2021:1530-1536.
GAO Weidong. Cotton textile manual:Volume II[M]. Beijing: China Textile & Apparel Press, 2021:1530-1536.
[2] 徐惠君. 转杯纺纱发展战略的探讨[J]. 纺织导报, 2013(7):32- 34,36-37.
XU Huijun. A discussion on the strategy for developing rotor-spinning[J]. China Textile Leader, 2013(7):32- 34, 36-37.
[3] 徐惠君, 张志, 刘延华. 转杯纺纱机的高速化、智能化及自动化发展[J]. 纺织导报, 2014(1):37-43.
XU Huijun, ZHANG Zhi, LIU Yanhua. Development of rotor spinning machinery: high-speed,intelligent and automatic[J]. China Textile Leader, 2014(1):37-43.
[4] 陈顺明, 泮志连, 程四新, 等. 关于转杯纺创新开发新型纱线的调查分析[J]. 纺织导报, 2021(1):58-62.
CHEN Shunming, PAN Zhilian, CHENG Sixin, et al. Investigation and analysis of the innovative development of rotor-spinning yarns[J]. China Textile Leader, 2021 (1): 58-62.
[5] 章友鹤, 朱丹萍, 赵连英, 等. 新型纺纱的技术进步及产品开发[J]. 纺织导报, 2017(1):58-61.
ZHANG Youhe, ZHU Danping, ZHAO Lianying, et al. Advancement of new spinning technologies and related product development[J]. China Textile Leader, 2017 (1): 58-61.
[6] 韩晨晨, 罗彩鸿, 高卫东. 两种新型纺纱技术的发展现状[J]. 棉纺织技术, 2021, 49(11):1-4.
HAN Chenchen, LUO Caihong, GAO Weidong. Development status of two new spinning technologies[J]. Cotton Textile Technology, 2021, 49 (11): 1-4.
[7] 林惠婷, 高备, 张玉泽, 等. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(2):153-158.
LIN Huiting, GAO Bei, ZHANG Yuze, et al. Effect of bypass channel on rotor-spun yarn properties in rotor spinning[J]. Journal of Textile Research, 2019, 40(2): 153-158.
[8] 史倩倩, 王姜, 张玉泽, 等. 转杯纺纱气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(2):180-184,192.
SHI Qianqian, WANG Jiang, ZHANG Yuze, et al. Numerical analysis on formation mechanism of airflow field in rotor spinning unit[J]. Journal of Textile Research, 2021, 42 (2): 180-184,192.
[9] 刘超, 杨瑞华, 薛元, 等. 凝聚槽类型对转杯内气流场影响的数值模拟[J]. 纺织学报, 2017, 38(5):128-133,138.
LIU Chao, YANG Ruihua, XUE Yuan, et al. Numerical simulation of influence of groove type on flow field inside rotor[J]. Journal of Textile Research, 2017, 38 (5): 128-133,138.
[10] HAJILARI M, EAKANDARNEIJAD S, BURKHARDT H, et al. Effect of two separate fiber feed systems in rotor spinning on yarn properties[J]. Fiber and Polymers, 2007(8): 543-549.
[11] BURKHARDT D. Feed cylinder and opening device for a spinning machine: Germany, EP 1352998A3[P]. 2003-10-15.
[12] 杨瑞华, 薛元, 郭明瑞, 等. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
YANG Ruihua, XUE Yuan, GUO Mingrui, et al. Mechanism and characteristics of digital rotor spun yarn[J]. Journal of Textile Research, 2017, 38 (11): 32-35.
[13] 杨瑞华, 徐亚亚, 韩瑞叶, 等. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(3):44-48.
YANG Ruihua, XU Yaya, HAN Ruiye, et al. Friele color matching model of multi-channel rotor-spun mixed color yarn[J]. Journal of Textile Research, 2019, 40(3): 44-48.
[14] 邓茜茜, 杨瑞华, 徐亚亚, 等. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(7): 31-37.
DENG Xixi, YANG Ruihua, XU Yaya, et al. Study on mixing uniformity of fibers in rotor-spun mixed yarns[J]. Journal of Textile Research, 2019, 40 (7): 31-37.
[15] 张玉泽. 转杯纺双分梳技术研究[D]. 上海: 东华大学, 2014:9-18.
ZHANG Yuze. Research on the double-carding technology of rotor spinning[D]. Shanghai: Donghua University, 2014: 9-18.
[16] SHI Q Q, WANG J, ZHANG Y Z, et al. Comparison of the airflow characteristics and yarn properties between conventional and dual-feed-opening rotor spinning units[J]. Textile Research Journal, 2022, 92(5/6):660-674.
doi: 10.1177/00405175211041721
[17] 史倩倩, 高备, 林惠婷, 等. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(2):63-68.
SHI Qianqian, GAO Bei, LIN Huiting, et al. Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning[J]. Journal of Textile Research, 2019, 40(2): 63-68.
[18] AKANKWASA N T, LIN H T, ZHANG Y Z, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2018, 88(3):237-253.
doi: 10.1177/0040517516677230
[19] SHI Q Q, AKANKWASA N T, ZHANG Y Z, et al. Characterization of the airflow field in the rotor spinning unit based on a novel experimental approach and numerical simulation[J]. Textile Research Journal, 2021, 91(7/8) :717-728.
doi: 10.1177/0040517520957400
[20] 张倩. 基于双分梳技术的转杯纺混纺工艺研究[D]. 上海: 东华大学, 2015:22-27.
ZHANG Qian. Research on the blending process of double-carding technology in rotor spinning[D] Shanghai: Donghua University, 2015:22-27.
[21] 惠林涛. 双分梳转杯纺技术研究与产品开发[D]. 上海: 东华大学, 2019:47-54.
HUI Lintao. Research and product development of double carding rotor spinning technology[D]. Shanghai: Donghua University, 2019:47-54.
[22] 刘晨芳, 徐剑桥, 汪军, 等. 亚麻/棉转杯牛仔纱的设计与开发[J]. 上海纺织科技, 2021, 49(12):47-48,60.
LIU Chenfang, XU Jianqiao, WANG Jun, et al. Design and development of flax / cotton environment-friendly rotor denim yarn[J]. Shanghai Textile Science & Technology, 2021, 49 (12): 47-48,60.
[23] 李鉴洲, 江慧, 汪军. 双分梳转杯色纺纱的工艺与性能研究[J]. 纺织器材, 2021, 48(4):5-8.
LI Jianzhou, JIANG Hui, WANG Jun. Research on the process and performance of double-carding rotor colored yarn[J]. Textile Accessories, 2021, 48 (4): 5-8.
[24] 莫鸿妃, 王妮, 汪军, 等. 环保牛仔布用转杯纺竹节纱花型工艺设计[J]. 纺织器材, 2021, 48(6):5-8.
MO Hongfei, WANG Ni, WANG Jun, et al. Process design of rotor spinning slub yarn pattern for eco-friendly denim[J]. Textile Accessories, 2021, 48 (6): 5-8.
[1] GUO Mingrui, GAO Weidong. Method and characteristics of section colored slub yarns spun by two-channel ring spinning based on single-zone drafting [J]. Journal of Textile Research, 2022, 43(08): 21-26.
[2] ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33.
[3] ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47.
[4] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[5] LIANG Jiaojiao, WANG Jingjing, XIA Yumin, ZHU Xinyuan, YAN Bing, SUN Liming, WANG Yanping, HE Yong, WANG Yimin. Preparation and properties of normal pressure-anionic dyeable polypropylene fiber based on polyionic liquid [J]. Journal of Textile Research, 2022, 43(07): 17-21.
[6] XUE Chao, ZHU Hao, YANG Xiaochuan, REN Yu, LIU Wanwan. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers [J]. Journal of Textile Research, 2022, 43(07): 29-35.
[7] AO Limin, LOU Huan, TANG Wen. Residual twist of core yarn and its application in hollow spindle cover spinning [J]. Journal of Textile Research, 2022, 43(07): 41-46.
[8] SHAO Jingfeng, DONG Mengyuan. Influence of performance degradation of spinning frames on yarn quality under dependent competition failure [J]. Journal of Textile Research, 2022, 43(06): 171-179.
[9] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[10] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[11] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[12] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[13] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[14] YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85.
[15] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!