Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (10): 196-204.doi: 10.13475/j.fzxb.20220502802

• Comprehensive Review • Previous Articles     Next Articles

Research progress in colloidal electrospun micro/nano fibers

FU Zheng1, MU Qifeng1, ZHANG Qingsong1,2(), ZHANG Yuchen3, LI Yuying3, CAI Zhongyu4   

  1. 1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Textile and Clothing, Yantai Nanshan University, Yantai, Shandong 265713, China
    3. College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    4. Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • Received:2022-05-10 Revised:2022-12-16 Online:2023-10-15 Published:2023-12-07

Abstract:

Significance Colloidal electrospinning is a new micro-nano preparation technology based on electrospinning. The colloidal particles are mixed with the template polymer solution and electrospun, and the colloidal particles are embedded in the nanofibers. On the one hand, the template polymer improves the spinnability of colloidal particles and provides a flexible carrier for colloidal particles and on the other hand the embedding of functional colloidal particles brings new functions to the fiber. In order to further understand the morphology control for wide applications of colloidal electrospinning fibers, this paper reviews the concept, working principle, morphology shape influencing factors, spinning treatment and application of colloidal electrospinning, and the future development of colloidal electrospinning prospect.

Progress As a branch of electrospinning, colloidal electrospinning makes it possible that composite micro/nano fiber membranes with special structure and properties can be obtained by electrospinning after mixing colloidal particles with template polymer. Colloidal particles can be divided into three categories, i.e. inorganic colloidal particles such as silicon dioxide (SiO2), polymer colloidal particles such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and temperature-sensitive microgel particles such as poly(N-isopropylacrylamide) (PNIPAm), Poly(N-vinylcaprolactam) (PVCL). Template polymers can improve the spinnability of colloidal particles and provide flexible carriers for colloidal particles among which poly(vinyl alcohol) (PVA) is the most commonly used template. The morphology of colloidal electrospun fiber mainly depends on the ratio of colloidal particles to template polymer, colloidal particle size, surfactant, viscosity of spinning solution and spinning voltage, and so on. It has been reported that there are beaded structure, bracelet structure, one-dimensional colloidal assembly, necklace structure, colloidal rod structure, spindle-like structure, colloidal fiber structure, and black berry-like structure. The range of application can be further broadened by different treatments before and after colloidal electrospinning. On the one hand, colloidal particles can be used as a nano-container to load drugs or metal oxide particles, and on the other hand, the composite fibers can be calcined, soaked and cross-linked, which can give the fibers new functions. The fiber membranes with different treatments can be used in the fields of super hydrophobicity, adsorption, catalysis, sensing, tissue engineering, photonic crystal fiber and so on.

Conclusion and Prospect At present, composite micro/nano fiber membranes with various morphologies and functions can be prepared by colloidal electrospinning and further treatment, but the research on colloidal electrospinning is still in its infancy. The preparation of composite fiber membranes with flexibility, good mechanical properties and specific function by colloid electrospinning demands further research. In order to better develop of colloidal electrospun fiber, the future research can be carried out from the following four aspects. ①At present, colloidal electrospinning is mainly univariate colloidal electrospinning. In the future, multicomponent colloid electrospinning technology should be developed to integrate multiple functions on the fiber membrane, or to realize the controlled release of many drugs on the fiber membrane. ②After the template polymer in the composite fiber membrane is removed by calcination or immersion, the fiber membrane has higher brittleness and poor mechanical properties, which limits the further application of the fiber membrane. In the future, the mechanical properties can be enhanced by improving the interaction between colloidal particles, such as physical or chemical interaction. ③Active substances such as enzymes, cells and viruses can be loaded into the fiber by electrospinning to develop bioactive fiber membranes for tissue engineering. ④Colloidal electrospinning can be combined with 3D printing to construct composite fiber membranes with three-dimensional structure.

Key words: colloidal electrospinning, colloidal particle, micro/nano fiber, morphology control, template polymer

CLC Number: 

  • TS171

Fig. 1

Schematic diagram of colloid electrospinning"

Fig. 2

Morphology of colloidal electrospun fiber. (a) Beaded structure; (b) Bracelet structure; (c) One-dimensional colloidal assembly; (d) Necklace structure; (e) Colloidal rod structure; (f) Spindle-like structure; (g) Colloidal fiber structure; (h) Black berry structure"

Fig. 3

Morphology and cross section of colloidal fibers under different densities"

[1] MIGUEL SÓnia P, FIGUEIRA Daniela R, SIMÕES Déborah, et al. Electrospun polymeric nanofibres as wound dressings: a review[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 60-71.
doi: 10.1016/j.colsurfb.2018.05.011
[2] LIU Yang, MA Hongyang, HSIAO Benjamin S, et al. Improvement of meltdown temperature of lithium-ion battery separator using electrospun polyethersulfone membranes[J]. Polymer, 2016, 107: 163-169.
doi: 10.1016/j.polymer.2016.11.020
[3] ZHAO Luying, DUAN Gaigai, ZHANG Guoying, et al. Electrospun functional materials toward food packaging applications: a review[J]. Nanomaterials, 2020. DOI: 10.3390/nano10010150.
[4] CHENG Huiling, YANG Xiaoye, CHE Xin, et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Materials Science and Engineering: C, 2018, 90: 750-763.
doi: 10.1016/j.msec.2018.05.007
[5] KHALILY Mohammad Aref, YURDERI Mehmet, HAIDER Ali, et al. Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26162-26169.
[6] LI Xiaoqiang, CHEN Shi, HUA Qiu, et al. Fabrication of fluorescent poly (L-lactide-co-caprolactone) fibers with quantum-dot incorporation from emulsion electrospinning for chloramphenicol detection[J]. Journal of Applied Polymer Science, 2017, 134(11): 1-7.
[7] FUENMAYOR Carlos Alberto, LEMMA Solomon Mengistu, MANNINO Saverio, et al. Filtration of apple juice by nylon nanofibrous membranes[J]. Journal of Food Engineering, 2014, 122: 110-116.
doi: 10.1016/j.jfoodeng.2013.08.038
[8] CRESPY Daniel, FRIEDEMANN Kathrin, POPA Ana-Maria. Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions[J]. Macromolecular Rapid Communications, 2012, 33(23): 1978-1995.
doi: 10.1002/marc.201200549 pmid: 23129202
[9] AGARWAL Seema, GREINER Andreas. On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3): 372-378.
doi: 10.1002/pat.v22.3
[10] JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Nanocontainers in and onto nanofibers[J]. Accounts of Chemical Research, 2016, 49(5): 816-823.
doi: 10.1021/acs.accounts.5b00524 pmid: 27135135
[11] ZHANG Chuanling, YU Shuhong. Nanoparticles meet electrospinning: recent advances and future pros-pects[J]. Chemical Society Reviews, 2014, 43(13): 4423-4448.
doi: 10.1039/c3cs60426h pmid: 24695773
[12] LIM Jong-Min, MOON Jun Hyuk, YI Gi-Ra, et al. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers[J]. Langmuir, 2006, 22(8): 3445-3449.
doi: 10.1021/la053057d pmid: 16584206
[13] STOILJKOVIC Aleksandar, ISHAQUE Michael, JUSTUS Uwe, et al. Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning[J]. Polymer, 2007, 48(14): 3974-3981.
doi: 10.1016/j.polymer.2007.04.050
[14] WU Chaojie, YUAN Wei, AL-DEYAB Salem S, et al. Tuning porous silica nanofibers by colloid electrospinning for dye adsorption[J]. Applied Surface Science, 2014, 313: 389-395.
doi: 10.1016/j.apsusc.2014.06.002
[15] WANG Min, LI Xiong, HUA Weikang, et al. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence perfor-mance[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23995-24007.
[16] XIA Yan, ZHAO Hongran, LIU Sen, et al. The humidity-sensitive property of MCM-48 self-assembly fiber prepared via electrospinning[J]. RSC Advances, 2014, 4(6): 2807-2812.
doi: 10.1039/C3RA45339A
[17] MERCATO Loretta Laureana Del, MOFFA Maria, RINALDI Rosaria, et al. Ratiometric organic fibers for localized and reversible ion sensing with micrometer-scale spatial resolution[J]. Small, 2015, 11(48): 6417-6424.
doi: 10.1002/smll.201502171 pmid: 26539625
[18] SAN Luis Alicia De, AGUIRREURRETA Ziortza, PARDO Leticia M, et al. PS/PMMA-CdSe/ZnS quantum dots hybrid nanofibers for VOCs sensors[J]. Israel Journal of Chemistry, 2018, 58(12): 1347-1355.
doi: 10.1002/ijch.v58.12
[19] HORZUM Nesrin, MUNOZ-ESPI Rafael, GLASSER Gunnar, et al. Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6338-6345.
[20] MIGENDA Julia, WERNER Sebastian, ELLINGHAUS Rüdiger, et al. Mesoporous poly(divinylbenzene) fibers based on crosslinked nanoparticles[J]. Macromolecular Chemistry and Physics, 2018, 219(5): 1-13.
[21] LIM Jongmin, YI Gira, MOON Junhyuk, et al. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology[J]. Langmuir, 2007, 23(15): 7981-7989.
pmid: 17569546
[22] LI Xiong, YU Xufeng, CHENG Cheng, et al. Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21919-21930.
[23] JIANG Shuai, LV Liping, LANDFESTER Katharina, et al. Dual-responsive multicompartment nanofibers for controlled release of payloads[J]. RSC Advances, 2016, 6(49): 43767-43770.
doi: 10.1039/C6RA05687C
[24] JIANG Shuai, LV Liping, LI Qifeng, et al. Tailoring nanoarchitectonics to control the release profile of payloads[J]. Nanoscale, 2016, 8(22): 11511-11517.
doi: 10.1039/c6nr00917d pmid: 27198762
[25] KIM Sohee, PARK Sunggurl, KANG Sunwoong, et al. Nanofiber-based hydrocolloid from colloid electrospinning toward next generation wound dressing[J]. Macromolecular Materials and Engineering, 2016, 301(7): 818-826.
doi: 10.1002/mame.v301.7
[26] WU Yingke, LIN Weiwei, HAO Hongye, et al. Nanofibrous scaffold from electrospinning biodegradable waterborne polyurethane/poly(vinyl alcohol) for tissue engineering application[J]. Journal of Biomaterials Science-Polymer Edition, 2017, 28(7): 648-663.
doi: 10.1080/09205063.2017.1294041
[27] YUAN Wei, ZHOU Ning, SHI Lei, et al. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071.
[28] KIM Geon Hwee, AN Taechang, LIM Geunbae. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters, 2018, 13(204): 1-6.
doi: 10.1186/s11671-017-2411-3
[29] YUAN Shujian, MENG Weihao, DU Aihua, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science, 2019, 37(8): 729-736.
doi: 10.1007/s10118-019-2286-0
[30] JIN Yu, YANG Dayong, KANG Dongyang, et al. Fabrication of necklace-like structures via electrospinning[J]. Langmuir, 2010, 26(2): 1186-1190.
doi: 10.1021/la902313t pmid: 19689141
[31] STOILJKOVIC Aleksandar, VENKATESH Rajan, KLIMOV Evgueni, et al. Poly(styrene-co-n-butyl acrylate) nanofibers with excellent stability against water by electrospinning from aqueous colloidal disper-sions[J]. Macromolecules, 2009, 42(16): 6147-6151.
doi: 10.1021/ma900354u
[32] YUAN Wei, ZHANG Keqin. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012, 28(43): 15418-15424.
doi: 10.1021/la303312q pmid: 23039272
[33] CAO Ding, LI Xinhua, YANG Lixia, et al. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions[J]. Journal of Applied Polymer Science, 2018, 135(26): 1-7.
[34] GIEBEL Elisabeth, GETZE Julia, ROCKER Thorsten, et al. The importance of crosslinking and glass transition temperature for the mechanical strength of nanofibers obtained by green electrospinning[J]. Macromolecular Materials and Engineering, 2013, 298(4): 439-446.
doi: 10.1002/mame.v298.4
[35] GONZALEZ Edurne, BARQUERO Aitor, MUNOZ-SANCHEZ BelÉn, et al. Green electrospinning of polymer latexes: a systematic study of the effect of latex properties on fiber morphology[J]. Nanomaterials, 2021, 11(3): 2-13.
doi: 10.3390/nano11010002
[36] MARQUES Susana C S, SOARES Paula I P, ECHEVERRIA Coro, et al. Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analy-sis[J]. RSC Advances, 2016, 6(80): 76370-76380.
doi: 10.1039/C6RA12713D
[37] MU Qifeng, ZHANG Qingsong, GAO Lu, et al. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAm nanofibers by electrospun packing[J]. Langmuir, 2017, 33(39): 10291-10301.
doi: 10.1021/acs.langmuir.7b02275 pmid: 28876075
[38] DIAZ Juan Esteban, BARRERO Antonio, MARQUEZ Manuel, et al. Absorption properties of microgel-PVP composite nanofibers made by electrospinning[J]. Macromolecular Rapid Communications, 2010, 31(2): 183-189.
doi: 10.1002/marc.200900534 pmid: 21590890
[39] FARIA Jaime, ECHEVERRIA Coro, BORGES Joao P, et al. Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning[J]. RSC Advances, 2017, 7(77): 48972-48979.
doi: 10.1039/C7RA07166C
[40] KEHREN Dominic, LOPEZ Astrid Catalina Molano, PICH Andrij. Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability[J]. Polymer, 2014, 55(9): 2153-2162.
doi: 10.1016/j.polymer.2014.03.025
[41] KEHREN Dominic, PICH Andrij. Fabrication and characterisation of microgel/polymer composite microfibres[J]. Macromolecular Materials and Engineering, 2013, 298(12): 1282-1293.
doi: 10.1002/mame.v298.12
[42] WILKE Philipp, COGER Vincent, NACHEV Milen, et al. Biocompatible microgel-modified electrospun fibers for zinc ion release[J]. Polymer, 2015, 61: 163-173.
doi: 10.1016/j.polymer.2015.01.078
[43] STÖBER Werner, FINK Arthur, BOHN Ernst. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
doi: 10.1016/0021-9797(68)90272-5
[44] HAN Yandong, LU Ziyang, TENG Zhaogang, et al. Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model[J]. Langmuir, 2017, 33(23): 5879-5890.
doi: 10.1021/acs.langmuir.7b01140 pmid: 28514596
[45] LI Shanshan, WAN Quan, QIN Zonghua, et al. Unraveling the mystery of Stöber silica's microporo-sity[J]. Langmuir, 2016, 32(36): 9180-9187.
doi: 10.1021/acs.langmuir.6b02472 pmid: 27548279
[46] STULAR Danaja, KRUSE Magnus, ZUPUNSKI Vera, et al. Smart stimuli-responsive polylactic acid-hydrogel fibers produced via electrospinning[J]. Fibers and Polymers, 2019, 20(9): 1857-1868.
doi: 10.1007/s12221-019-9157-8
[47] JIANG Shuai, HE Wei, LANDFESTER Katharina, et al. The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed[J]. Polymer, 2017, 127: 101-105.
doi: 10.1016/j.polymer.2017.08.061
[48] SUN Jinyuan, BUBEL Kathrin, CHEN Fei, et al. Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture[J]. Macromolecular Rapid Communications, 2010, 31(23): 2077-2083.
doi: 10.1002/marc.201000379 pmid: 21567634
[49] GONCALVES Adriana, ALMEIDA Filipe V, BORGES João Paulo, et al. Incorporation of dual-stimuli responsive microgels in nanofibrous membranes for cancer treatment by magnetic hyperthermia[J]. Gels, 2021, 7(1): 3-17.
doi: 10.3390/gels7010003
[50] JO Eunmin, LEE Seongwon, KIM Kyu Tae, et al. Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery[J]. Advanced Materials, 2009, 21(9): 968-972.
doi: 10.1002/adma.v21:9
[51] FRIEDEMANN Kathrin, TURSHATOV Andrey, LANDFESTER Katharina, et al. Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning[J]. Langmuir, 2011, 27(11): 7132-7139.
doi: 10.1021/la104817r pmid: 21561104
[52] HERRMANN Christine, TURSHATOV Andrey, CRESPY Daniel. Fabrication of polymer ellipsoids by the electrospinning of swollen nanoparticles[J]. ACS Macro Letters, 2012, 1(7): 907-909.
doi: 10.1021/mz300245b
[53] FRIEDEMANN Kathrin, CORRALES Tomas, KAPPL Michael, et al. Facile and large-scale fabrication of anisometric particles from fibers synthesized by colloid-electrospinning[J]. Small, 2012, 8(1): 144-153.
doi: 10.1002/smll.201101247 pmid: 22081486
[54] WEN Xian, XIONG Jian, LEI Sailing, et al. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications[J]. Advanced Fiber Materials, 2022, 4 (2), 145-161.
doi: 10.1007/s42765-021-00113-8
[55] HOHMAN Moses M, SHIN Michael, RUTLEDGE Gregory, et al. Electrospinning and electrically forced jets: I: stability theory[J]. Physics of Fluids, 2001, 13(8): 2201-2220.
doi: 10.1063/1.1383791
[56] GROβMANN Florian. Gilbert-taylor cones and multi-phase electrospinning[D]. Marburg: Philipps-Universität Marburg, 2009: 1-30.
[57] AGARWAL Seema, ECKHARDT Bruno, GROSSMANN Florian, et al. Gradient nanowires and nanotubes[J]. Physica Status Solidi: B, 2010, 247(10): 2451-2457.
doi: 10.1002/pssb.v247:10
[58] DING Bin, YU Jianyong. Electrospun nanofibers for energy and environmental applications[M]. Berlin: Springer, 2014: 2-50.
[59] 裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
[60] SIROHI Sidhharth, SINGH Dhirendra, NAIN Ratyakshi, et al. Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane[J]. RSC Advances, 2015, 5(43): 34377-34382.
doi: 10.1039/C4RA16988C
[1] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!