Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (10): 60-67.doi: 10.13475/j.fzxb.20220505001

• Textile Engineering • Previous Articles     Next Articles

Prediction of measuring error of bobbin winding density based on grey system theory

ZHOU Qihong1,2(), HAN Weilong2, CHEN Peng2, HONG Wei3, CEN Junhao3   

  1. 1. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    3. Guangzhou Seyounth Automation Technology Co., Ltd., Guangzhou, Guangdong 511400, China
  • Received:2022-05-16 Revised:2023-06-18 Online:2023-10-15 Published:2023-12-07

Abstract:

Objective In order to improve the measurement accuracy of the density measurement method for package yarn winding using laser scanning modeling, a prediction method for winding density measurement error based on grey system theory was proposed. By analyzing the changes in measurement errors obtained after adjusting measurement parameters in the actual production process, it can be known that the impact of new measurement parameters on the measurement errors of winding density. Improving the measurement accuracy of non-contact winding density measurement methods is very in line with the current demand for high-quality and efficient production.

Method By analyzing the correlation between pulse frequency, sampling period, and parameter K with measurement error through grey correlation analysis, the modeling parameters meeting the requirements of grey modeling were obtained. According to the characteristics that the actual modeling structure was nonlinear and the elements in the modeling factor sequence changed greatly, the optimized GM (1, N) (grey power model) was obtained by introducing background value optimization and fractional order accumulation based on the traditional multivariable GM (1, N) power model, and then by combining particle swarm optimization algorithm with power index adaptive optimization to establish PSGM (1, N) (particle swarm optimization of grey power model), and by using actual collected data to verify the modeling accuracy.

Results In order to compare and analyze, a classic multivariable GM (1, N) model, a traditional multivariable GM (1, N) power model and a multivariable PSGM (1, N) power model were established to predict the measurement errors in winding density of three different specifications of bobbin yarns. The modeling accuracy and prediction accuracy of these three models were analyzed and compared. In terms of modeling accuracy or model prediction, the optimized multivariate PSGM (1, N) power model had significantly higher modeling and prediction accuracy than the other two models. Combining the predicted measurement error values, the winding density measurement values were corrected to obtain more accurate winding density values. The experimental results showed that compared to the traditional multivariate GM (1, N) power model, the prediction accuracy of the winding density measurement error of the PSGM (1, N) power model was improved by 48.6%, and the measurement accuracy of the laser scanning modeling method was improved by 11.7%.

Conclusion In view of the fact that the actual modeling system is a nonlinear structure and the elements in the influence factor series have a large range of changes in the prediction process of the measurement error of bobbin yarn winding density, a nonlinear multivariable PSGM (1, N) power model optimized by particle swarm optimization algorithm is proposed for modeling and prediction. The use of this optimization model improves the following aspects, where the introduction of multivariable PSGM (1, N) power model can more accurately describe the nonlinear structural characteristics of the actual modeling system, can reduce the modeling error caused by the large change of elements in the influence factor series, and can improve the prediction accuracy within the data series interval. The particle swarm optimization algorithm was used to solve the optimal power exponent in the power model, which not only improves the accuracy of the model, but also improves the modeling efficiency. Particle swarm optimization algorithm has the characteristics of global optimization, which can easily and quickly calculate the optimal value of multiple parameters at the same time. Through practical modeling and analysis of predicted results, it has been proven that this model has good application value in predicting the measurement error of package yarn winding density.

Key words: bobbin yarn, winding density, grey system theory, particle swarm optimization algorithm, background value optimization, fractional cumulative generation, error prediction

CLC Number: 

  • TS19

Fig. 1

Particle swarm optimization GM (1, N) power model"

Tab. 1

Measurement error and related influencing factors of bobbin winding density"


卷绕密度测量误差/(g·cm-3) 脉冲频
率/kHz
采样周
期/s
参数
K
A B C
1 0.023 581 0.025 438 0.022 343 9.0 0.020 93
2 0.031 211 0.033 668 0.029 572 10.0 0.025 62
3 0.037 742 0.040 714 0.035 761 11.0 0.030 55
4 0.042 301 0.045 632 0.040 081 12.0 0.035 40
5 0.047 355 0.051 084 0.044 869 13.0 0.040 35
6 0.053 081 0.057 261 0.050 295 14.0 0.045 27
7 0.059 869 0.064 583 0.056 726 15.0 0.050 24
8 0.039 868 0.043 007 0.037 775 11.5 0.033 48
9 0.044 776 0.048 301 0.042 425 12.5 0.038 35
10 0.050 889 0.054 896 0.048 217 13.5 0.043 28

Tab. 2

Gray associativity value"

筒子纱 灰色关联度值
脉冲频率 采样周期 参数K
A 0.898 4 0.977 8 0.572 2
B 0.901 1 0.983 3 0.576 0
C 0.891 7 0.978 9 0.568 1

Tab. 3

Simulation and prediction results of winding density measurement error by three multivariable grey models"

筒子纱 序号 测量误差/
(g·cm-3)
经典多变量GM(1,N)模型 传统多变量GM(1,N)幂模型 多变量PSGM(1,N)幂模型
模拟值/(g·cm-3) 相对误差/% 模拟值/(g·cm-3) 相对误差/% 模拟值/(g·cm-3) 相对误差/%
A 1 0.023 581 0.023 581 0.00 0.023 581 0.00 0.023 581 0.00
2 0.031 211 -0.005 879 118.84 0.031 845 2.03 0.030 556 2.10
3 0.037 742 0.023 051 38.92 0.040 906 8.38 0.036 871 2.31
4 0.042 301 0.032 072 24.18 0.041 774 1.25 0.041 230 2.53
5 0.047 355 0.041 987 11.33 0.047 321 0.07 0.046 214 2.41
6 0.053 081 0.050 951 4.01 0.051 567 2.85 0.051 755 2.50
7 0.059 869 0.060 963 1.83 0.060 167 0.50 0.058 387 2.48
建模平均相对误差 28.45 2.15 2.05
8 0.039 868 0.031 185 21.78 0.039 719 0.37 0.039 179 1.73
9 0.044 776 0.039 362 12.09 0.040 755 8.98 0.043 626 2.57
10 0.050 889 0.045 255 11.07 0.047 579 6.50 0.048 827 4.05
预测平均相对误差 14.98 5.28 2.78
B 1 0.025 538 0.025 538 0.00 0.025 538 0.00 0.025 538 0.00
2 0.033 868 -0.003 098 109.15 0.034 531 1.96 0.033 644 0.66
3 0.040 914 0.030 165 26.27 0.043 982 7.50 0.040 752 0.39
4 0.045 332 0.041 559 8.32 0.047 040 3.77 0.045 217 0.25
5 0.051 784 0.052 386 1.16 0.052 752 1.87 0.051 731 0.10
6 0.057 961 0.061 596 6.27 0.056 649 2.26 0.057 421 0.93
7 0.064 183 0.070 744 10.22 0.064 140 0.07 0.063 906 0.43
建模平均相对误差 23.06 2.49 0.40
8 0.044 007 0.040 698 7.52 0.044 480 1.07 0.043 367 1.45
9 0.049 301 0.050 766 2.97 0.046 092 6.51 0.048 187 2.26
10 0.055 896 0.061 668 10.33 0.052 455 6.16 0.054 181 3.07
预测平均相对误差 6.94 4.58 2.26
C 1 0.022 443 0.022 443 0.00 0.022 443 0.00 0.022 443 0.00
2 0.029 172 -0.006 545 122.44 0.029 808 2.18 0.029 411 0.82
3 0.035 361 0.020 794 41.20 0.038 425 8.67 0.035 648 0.81
4 0.040 581 0.029 191 26.07 0.041 536 2.35 0.040 531 0.12
5 0.044 369 0.038 462 13.31 0.044 462 0.21 0.045 300 2.10
6 0.050 595 0.046 965 7.17 0.050 234 0.71 0.050 897 0.60
7 0.056 926 0.056 453 0.83 0.057 464 0.95 0.057 350 0.74
建模平均相对误差 30.15 2.16 0.74
8 0.039 275 0.028 271 28.02 0.038 287 2.51 0.038 212 2.71
9 0.044 225 0.036 003 18.59 0.042 010 5.01 0.042 981 2.81
10 0.049 017 0.046 279 5.59 0.045 785 6.59 0.048 133 1.80
预测平均相对误差 17.40 4.70 2.44

Tab. 4

Winding density measurement error correction results"

筒子纱 序号 测量值/
(g·cm-3)
校正值/
(g·cm-3)
精度提
高率/%
A 8 0.341 131 0.380 311 10.28
9 0.336 223 0.379 849 11.45
10 0.330 110 0.378 937 12.81
B 8 0.366 992 0.410 359 10.55
9 0.361 698 0.409 885 11.72
10 0.355 103 0.409 285 13.18
C 8 0.321 724 0.359 936 10.58
9 0.316 774 0.359 755 11.90
10 0.311 982 0.360 115 13.33
[1] 高晓艳, 王晓, 张小芳. 毛/涤混纺筒纱染色工艺探讨[J]. 毛纺科技, 2016, 44(6): 41-45.
GAO Xiaoyan, WANG Xiao, ZHANG Xiaofang. Research on dyeing of wool/polyester blended yarn[J]. Wool Textile Journal, 2016, 44(6): 41-45.
[2] 刘幸乐, 姚继明, 侯贺刚, 等. 纱线线密度与染色槽数对靛蓝上染率的影响[J]. 纺织学报, 2016, 37(6): 91-94.
LIU Xingle, YAO Jiming, HOU Hegang, et al. Effect of yarn density and dyeing vat on dye uptake of indigo[J]. Journal of Textile Research, 2016, 37(6): 91-94.
[3] 周伟, 王树根, 孙昌, 等. 羊毛筒子纱染色的渗透性及其匀染性[J]. 毛纺科技, 2020, 48(1): 1-8.
ZHOU Wei, WANG Shugen, SUN Chang, et al. Permeability and levelness control of wool dyeing of wool cheese[J]. Wool Textile Journal, 2020, 48(1): 1-8.
[4] 王元昌, 翁云菊. 筒子卷绕密度的计算[J]. 江南大学学报, 1999(4): 99-103.
WANG Yuanchang, WENG Yunju. The calculation of winding density of cheese[J]. Journal of Jiangnan University, 1999(4): 99-103.
[5] 江珊, 凌文漪, LUBO Hes, 等. 一种新型筒子纱硬度测试方法及其应用[J]. 上海纺织科技, 2015, 43(10): 90-93.
JIANG Shan, LING Wenyi, LUBO Hes, et al. A new testing method of cheese hardness and its applications[J]. Shanghai Textile Science & Technology, 2015, 43(10): 90-93.
[6] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(6): 141-146.
ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision[J]. Journal of Textile Research, 2020, 41(6): 141-146.
[7] 周其洪, 孙宝通, 岑均豪, 等. 采用激光扫描建模的筒子纱卷绕密度测量方法[J]. 纺织学报, 2021, 42(1): 96-102.
ZHOU Qihong, SUN Baotong, CEN Junhao, et al. Measurement method of winding density of cheese package based on laser scanning and modeling[J]. Journal of Textile Research, 2021, 42(1): 96-102.
doi: 10.1177/004051757204200205
[8] LIU S M, ZHAGN G Y. An improved grey model for corrosion prediction of tank bottom[J]. Protection of Metals, 2007, 43(4): 407-412.
doi: 10.1134/S0033173207040157
[9] 章毅, 郭泉, 王建勇. 大数据分析的神经网络方法[J]. 工程科学与技术, 2017, 49(1): 9-18.
ZHANG Yi, GUO Quan, WANG Jianyong. Big data analysis using neural networks[J]. Advanced Engineering Sciences, 2017, 49(1): 9-18.
[10] 潘澔, 高尚. GM(1,1)模型的性质及改进[J]. 山东大学学报: 理学版, 2021, 56(11): 38-42,60.
PAN Hao, GAO Shang. Properties and improvement of GM(1,1) models[J]. Journal of Shandong University: Natural Science, 2021, 56(11): 38-42,60.
[11] REN Jingzheng. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors[J]. Bioresource Technology, 2018, 247: 1258-1261.
doi: S0960-8524(17)31848-5 pmid: 29050652
[12] LI Yaping, CHEN Zhen, TAO Liangyan, et al. A novel multi-variable grey prediction model and its application in sino-russian timber trade volume forecasting[J]. Journal of Grey System, 2017, 29(4): 109-121.
[13] 何天隆, 李昊燃, 程远鹏, 等. 基于新型GM(1,N)模型的油气管道腐蚀速率预测[J]. 腐蚀与防护, 2021, 42(10): 79-85.
HE Tianlong, LI Haoran, CHENG Yuanpeng, et al. Prediction of pipeline corrosion rate based on new GM(1,N) Model[J]. Corrosion & Protection, 2021, 42(10): 79-85.
[14] KUO Yiyo, YANG Taho, HUANG Guanwei. The use of grey relational analysis in solving multiple attribute decision-making problems[J]. Computers & Industrial Engineering, 2007, 55(1): 80-93.
doi: 10.1016/j.cie.2007.12.002
[15] ZHOU Qihong, LIN Liqun, CHEN Ge, et al. Prediction and optimization of electrospun polyacrylonitrile fiber diameter based on grey system theory[J]. Materials, 2019, 12(14): 2237-2237.
doi: 10.3390/ma12142237
[1] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[2] JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162.
[3] . Warp knit fabric defect detection method based on optimal Gabor filters [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 48-54.
[4] . Hue prediction on Intercolor for women’s spring/summer using GM(1,1) models [J]. Journal of Textile Research, 2015, 36(04): 128-133.
[5] ZHONG Anhua;XU Weilin;CUI Weigang;PENG Xuqiang;ZHANG Yuan. Evaluation of the effect of environment factors on the moisture permeability of leather using grey system theory [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(7): 98-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!