Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 199-207.doi: 10.13475/j.fzxb.20220506701
• Machinery & Accessories • Previous Articles Next Articles
DAI Ning1,2(), LIANG Huijiang3, HU Xudong1, QI Dongming2,4, XU Yushan3, TU Jiajia1, SHI Weimin1
CLC Number:
[1] | 李衍田. 纱库式自动络筒机智能投纱系统的改造实践[J]. 纺织器材, 2019, 46(5):54-55. |
LI Yantian. Reform practice of the intelligent yarn feeding system of auto-coner with yarn bank[J]. Textile Accessories, 2019, 46(5):54-55. | |
[2] | 倪远. 纱库式自动络筒机管纱自动上纱技术改造项目现状与市场分析[J]. 纺织器材, 2019, 46(1):9-12. |
NI Yuan. Current situation and market analysis of the technical reform project of auto-feeding technology of bobbin yarn for the auto-coner with yarn bank[J]. Textile Accessories, 2019, 46(1):9-12. | |
[3] | 夏治刚, 徐傲, 万由顺, 等. 基于碳中和的人-机-料-法-环五位一体纺纱新技术解析[J]. 纺织学报, 2022, 43(1):58-66. |
XIA Zhigang, XU Ao, WAN Youshun, et al. Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization[J]. Journal of Textile Research, 2022, 43(1):58-66. | |
[4] | 梅顺齐, 胡贵攀, 王建伟, 等. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10):166-171. |
MEI Shunqi, HU Guipan, WANG Jianwei, et al. Analysis of some key technology basis for intelligent textile manufacturing and its equipment[J]. Journal of Textile Research, 2017, 38(10):166-171. | |
[5] | 柳威, 梅顺齐, 徐斯云, 等. 现代高速并条机的自动换筒技术[J]. 轻工机械, 2012, 30(6):86-90. |
LIU Wei, MEI Shunqi, XU Siyun, et al. Automatic can change of the modern new high-speed drawing frame[J]. Light Industry Machinery, 2012, 30(6):86-90. | |
[6] | 张洪, 魏毅, 陈瑞, 等. 整经机筒子架自动换筒机器人系统研发[J]. 上海纺织科技, 2020, 48(6): 10-13, 16. |
ZHANG Hong, WEI Yi, CHEN Rui, et al. Research and development of automatic barrel changing robot system for warping machine's barrel frame[J]. Shanghai Textile Science & Technology, 2020, 48(6): 10-13, 16. | |
[7] | 张洪, 魏毅, 李铬, 等. 基于机器人的整经机筒子架自动换筒系统研发[J]. 上海纺织科技, 2020, 48(4):25-28. |
ZHANG Hong, WEI Yi, LI Ge, et al. Research and development of automatic tube changing system of warping machine creel based on robot[J]. Shanghai Textile Science & Technology, 2020, 48(4):25-28. | |
[8] | 佘娟. 智能纱架的控制系统设计[D]. 上海: 东华大学, 2014:12-50. |
SHE Juan. Design on control system of the intelligent creel robot[D]. Shanghai: Donghua University, 2014:12-56. | |
[9] | 顾颖佳. 智能纱架机械手系统研制[D]. 上海: 东华大学, 2013:8-72. |
GU Yingjia. The design of the system of the intelligent creel robot[D]. Shanghai: Donghua University, 2013:8-12. | |
[10] | 徐造林, 程四新, 章友鹤. 自动化、智能化技术助推纺纱企业提质降耗、减员增效[J]. 纺织导报, 2019(4):62-67. |
XU Zaolin, CHENG Sixin, ZHANG Youhe. Automation and intelligent technology promote the sustainable development of spinning enterprises[J]. China Textile Leader, 2019(4):62-67. | |
[11] | 景军锋, 郭根. 基于机器视觉的丝饼毛羽检测[J]. 纺织学报, 2019, 40(1): 147-152. |
JING Junfeng, GUO Gen. Yarn packages hairiness detection based on machine vision[J]. Journal of Textile Research, 2019, 40(1): 147-152.
doi: 10.1177/004051757004000208 |
|
[12] | 王鑫. 基于嵌入式系统的图像处理技术研究[D]. 北京: 中国科学院大学, 2015: 1-2. |
WANG Xin. The research of image processing technology based on embedded system[D]. Beijing: University of Chinese Academy of Sciences, 2015: 1-2. |
[1] | YANG Hongmai, ZHANG Xiaodong, YAN Ning, ZHU Linlin, LI Na'na. Robustness algorithm for online yarn breakage detection in warp knitting machines [J]. Journal of Textile Research, 2023, 44(05): 139-146. |
[2] | LI Yang, PENG Laihu, LI Jianqiang, LIU Jianting, ZHENG Qiuyang, HU Xudong. Fabric defect detection based on deep-belief network [J]. Journal of Textile Research, 2023, 44(02): 143-150. |
[3] | AN Yijin, XUE Wenliang, DING Yi, ZHANG Shunlian. Evaluation of textile color rubbing fastness based on image processing [J]. Journal of Textile Research, 2022, 43(12): 131-137. |
[4] | ZHANG Dongjian, GAN Xuehui, YANG Chongchang, HAN Fuyi, LIU Xiangyu, TAN Yuan, LIAO He, WANG Songlin. Research progress in non-contact fiber tension detection technology in spinning process [J]. Journal of Textile Research, 2022, 43(11): 188-194. |
[5] | YUAN Yanhong, ZENG Hongming, MAO Muquan. Needle selector detection system based on image processing [J]. Journal of Textile Research, 2022, 43(10): 176-182. |
[6] | DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73. |
[7] | MA Yunjiao, WANG Lei, PAN Ruru, GAO Weidong. Calibration method of three-dimensional yarn evenness based on mirrored image [J]. Journal of Textile Research, 2022, 43(07): 55-59. |
[8] | ZHOU Qihong, PENG Yi, CEN Junhao, ZHOU Shenhua, LI Shujia. Yarn breakage location for yarn joining robot based on machine vision [J]. Journal of Textile Research, 2022, 43(05): 163-169. |
[9] | ZHANG Ronggen, FENG Pei, LIU Dashuang, ZHANG Junping, YANG Chongchang. Research on on-line detection system of broken filaments in industrial polyester filament [J]. Journal of Textile Research, 2022, 43(04): 153-159. |
[10] | XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75. |
[11] | LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206. |
[12] | XU Jin, YANG Pengcheng, XIAO Yuan, XU Guangshen. Visual measurement of key geometric parameters of droplet in circuit jet printing on fabric surface [J]. Journal of Textile Research, 2021, 42(07): 137-143. |
[13] | XIA Xuwen, MENG Shuo, PAN Ruru, GAO Weidong. On-line detection of warp collision and reed embedding based on improved inter-frame difference method [J]. Journal of Textile Research, 2021, 42(06): 91-96. |
[14] | JIANG Yanting, YAN Qingshuai, XIN Binjie, GAO Cong, SHI Meiwu. Comparative study on testing methods for unidirectional water transport in fabrics [J]. Journal of Textile Research, 2021, 42(05): 51-58. |
[15] | LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88. |
|