Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 90-97.doi: 10.13475/j.fzxb.20220605101
• Textile Engineering • Previous Articles Next Articles
LIU Qing, NIU Li, JIANG Gaoming, MA Pibo()
CLC Number:
[1] | 王秋实, 何彩婷, 王珊, 等. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43 (8): 183-188, 205. |
WANG Qiushi, HE Caiting, WANG Shan, et al. Research progress in fabric reinforced flexible stab-resistance composites[J]. Journal of Textile Research, 2022, 43 (8): 183-188, 205. | |
[2] | YANG W Q, LIU X Y, YU Y P, et al. Evaluation of stab resistance of coated UHMWPE fabric[J]. Fibers & Textiles in Eastern Europe, 2020, 28 (2): 76-79. |
[3] |
ZHAO H Y, QIANG Y Q, PENG H K, et al. Enhancement of a novel sizing agent in mechanical properties and stab/puncture resistance of Kevlar fabrics[J]. Fibers and Polymers, 2022, 22 (12): 3309-3316.
doi: 10.1007/s12221-021-0432-0 |
[4] | 邱日祥, 韩启龙. 防刺服的现状与发展[J]. 警察技术, 2020 (5): 77-81. |
QIU Rixiang, HAN Qilong. Current situation and development of stab resistant clothing[J]. Police Technology, 2020 (5):77-81. | |
[5] | 李凤艳, 叶天宇, 展晓晴, 等. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42 (7): 82-88. |
LI Fengyan, YE Tianyu, ZHAN Xiaoqing, et al. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns[J]. Journal of Textile Research, 2021, 42 (7): 82-88. | |
[6] | 孙亚鑫, 马丕波. 芳纶纤维衬纬结构纬编织物的防刺性能[J]. 纺织高校基础科学学报, 2022, 35 (1): 1-6. |
SUN Yaxin, MA Pibo. Stab resistance of weft-Knitted insertion fabric with Kevlar fibers[J]. Basic Sciences Journal of Textile Universities, 2022, 35 (1): 1-6. | |
[7] | 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40 (6): 172-176, 182. |
WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property[J]. Journal of Textile Research, 2019, 40 (6): 172-176, 182. | |
[8] | LI T T, ZHANG X Y, WU L W, et al. Polyethylene terephthalate/basalt stab-resistant sandwich composites based on the box-behnken design: parameter optimization and empirical regression model[J]. Journal of Sandwich Structures & Materials, 2022, 22 (7): 2391-2407. |
[9] | LI M R, WANG P, BOUSSU F, et al. Investigation of impact performance of 3-dimensional interlock polymer fabrics in double and multi-angle pass stabbing[J]. Materials & Design, 2021. DOI: 10.1016/j.matdes.2021.109775. |
[10] |
XIN Y F. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids[J]. Materials and Design, 2014, 64:456-461.
doi: 10.1016/j.matdes.2014.06.060 |
[11] | 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(5): 38-44. |
CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix[J]. Journal of Textile Research, 2020, 41 (5): 38-44.
doi: 10.1177/004051757104100107 |
|
[12] |
HE Q, CAO S, WANG Y, et al. Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel-science direct[J]. Composite Part A: Applied Science and Manufacturing, 2018, 106: 82-90.
doi: 10.1016/j.compositesa.2017.12.019 |
[13] | XIA M M, QUAN Z Z, WANG X L, et al. Preparation and characterization of B4C particle coated composites for stab-resistance[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111370. |
[14] |
YANG W, CHEN I H, GLUDOVATZ B, et al. Natural flexible dermal armor[J]. Advance Materials, 2013, 25: 31-48.
doi: 10.1002/adma.v25.1 |
[15] |
JOHNSON A A, BINGHAM G A, MAJEWSKI C E. The design and assessment of bio-inspired additive manufactured stab-resistant armour[J]. Virtual and Physical Prototyping, 2018, 13 (2): 49-57.
doi: 10.1080/17452759.2017.1369438 |
[16] |
HE J J. Egg-shell structure design for stab resistant body armor[J]. Materials Today Communications, 2018, 16:26-36.
doi: 10.1016/j.mtcomm.2018.04.006 |
[17] | 宫政. 薄壳仿生型3D打印防刺基板的设计及性能优化[D]. 北京: 北京理工大学, 2017: 46-48. |
GONG Zheng. Structure design and optimization on 3D printed bionic shelled stab resistance plate[D]. Beijing: Beijing Institute of Technology, 2017: 46-48. | |
[18] | 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(7):67-71. |
MA Feifei. Stab-resistant performance and wearability of composite materials made by discrete resin molding[J]. Journal of Textile Research, 2020, 41 (7):67-71. | |
[19] | 于春玲, 姜亚明, 张新伟. 防刺甲片的形状及搭接设计[J]. 纺织导报, 2011(1):77-79. |
YU Chunling, JIANG Yaming, ZHANG Xinwei. Shape and overlap design of stab-resistant armor shard[J]. China Textile Leader, 2011(1):77-79. | |
[20] |
MARTINI R, BALIT Y, BARTHELAT F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing[J]. Acta Biomaterialia, 2017, 55: 360-372.
doi: S1742-7061(17)30187-3 pmid: 28323175 |
[21] | 董继萍, 刘晓艳, 于伟东. 织物表面防刺割树脂片形状的确定[J]. 纺织学报, 2017, 38(12):60-64. |
DONG Jiping, LIU Xiaoyan, YU Weidong. Determination about geometry of stab-resistant resin flakes on surface of fabric[J]. Journal of Textile Research, 2017, 38 (12):60-64. | |
[22] |
刘宇航, 黄广炎, 张宏, 等. 高性能复合纤维的防刺机理[J]. 兵工学报, 2022, 43 (9): 2143-2151.
doi: 10.12382/bgxb.2021.0513 |
LIU Yuhang, HUANG Guangyan, ZHANG Hong, et al. Stabbing resistance mechanism of high-performance composite fabrics[J]. Acta Armamentarll, 2022, 43 (9): 2143-2151. | |
[23] |
WANG B, SULLIVAN T N. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76: 4-20.
doi: S1751-6161(17)30204-7 pmid: 28522235 |
[24] |
WANG B, YANG W, SHERMAN V R, et al. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales[J]. Acta Biomaterialia, 2016, 41: 60-74.
doi: 10.1016/j.actbio.2016.05.028 pmid: 27221793 |
[1] | CHU Yanyan, LI Shichen, CHEN Chao, LIU Yingying, HUANG Weihan, ZHANG Yue, CHEN Xiaogang. Research progress in bulletproof flexible textile materials and structures [J]. Journal of Textile Research, 2022, 43(12): 203-212. |
[2] | WANG Qiushi, HE Caiting, WANG Shan, CHEN Meiyu, LIANG Gaoyong, SUN Runjun. Research progress in fabric reinforced flexible stab-resistance composites [J]. Journal of Textile Research, 2022, 43(08): 183-188. |
[3] | WANG Jianping, MIAO Mingzhu, SHEN Deyao, YAO Xiaofeng. Development and performance evaluation of knitted fabric with bionic bird feather structure [J]. Journal of Textile Research, 2022, 43(04): 55-61. |
[4] | YUAN Qiong, QIU Haipeng, XIE Weijie, WANG Ling, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Mechanical properties and damage mechanism of three-dimensional six-directional braided SiCf/SiC composites [J]. Journal of Textile Research, 2021, 42(12): 81-89. |
[5] | YANG Tiantian, WANG Ling, QIU Haipeng, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites [J]. Journal of Textile Research, 2020, 41(12): 73-80. |
[6] | LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112. |
[7] | ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34. |
[8] | . Stab-resistant mechanism of fabrics and influence of cutter shape on stab resistance [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 55-61. |
[9] | WANG Xu;YAN Xiong. Acoustic emission features on damage behaviors of PE self-reinforced composites [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 27-31. |
[10] | GU Zhao-wen. Study on the principle of soft complex stab-resistant body armor [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(8): 80-84. |
|