Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 11-20.doi: 10.13475/j.fzxb.20220606310

• Invited Column: Frontiers of Textile Science and Technology • Previous Articles     Next Articles

Review on thermal-drawn multimaterial fiber optoelectronics

ZHANG Jing1, HUANG Zhiheng2, NIU Guangliang2, LIANG Sheng3, YANG Lüyun2, WEI Lei4, ZHOU Shifeng5, HOU Chong2,6, TAO Guangming2,7()   

  1. 1. School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
    2. Wuhan National Laboratory for Optoelectronics and Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    3. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
    4. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
    5. School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
    6. School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    7. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2022-06-27 Revised:2022-09-18 Online:2023-01-15 Published:2023-02-16

Abstract:

Significance With the rapid development of textile engineering and material science, intelligent fibers and related fabrics have become the preferred carriers for wearable electronics with their advantages in softness, lightness, and breathability. A variety of fiber manufacturing technologies has been developed, enabling conventional fibers with new capabilities such as environmental/physical/chemical sensing, logical computing, human-machine interaction, and so on. Among these manufacturing techniques, the thermal drawing process can be adopted to fabricate multimaterial optoelectronic fibers, providing an innovative research for intelligent fibers and fabrics. By enriching fiber structures, materials and post-treatment techniques, thermal-drawn fibers can be integrated with multiple functions such as multi-parameter sensing, temperature regulation, and information interaction, broadening the application scenarios of fibers.
Progress Thermal-drawn multimaterial optoelectronic fibers are generally drawn from fiber preforms with a fiber drawing tower. The external forms, internal structures, and materials of fiber preforms can all be designed with great flexibility according to the applications and functions. The diameters of fibers are typically in the micron range, and the structures of the fibers are consistent with the preform rods. In addition, fiber post-treatment techniques, such as thermal treatment and cold-drawing process, can further enrich and modify the structures, giving more ways to improve the functionalities of fibers.
With these advanced fiber drawing and processing technologies, micro- and nano-structured fibers can be achieved. For example, a low-loss CO2 laser-propagated photonic bandgap fiber has been achieved with a hollow core surrounded by a solid multilayer structure of high refractive-index contrast. The fiber has a large photonic bandgap and omnidirectional reflectivity. Nanowires, structural micro- and nanospheres, nanorods, and porous fibers have also been produced in a scalable way by the in-fiber fluid instability phenomena, cold-drawing deformation, and salt leaching techniques. Moreover, surface micro-nano imprinting technology has been utilized to construct specific fibers with micro/nano-surface patterns.
The richness of structures and materials gives fibers a variety of advanced functionalities, such as sensing, energy management, neural probing, and information interaction. For sensing, the thermal-drawn fibers have been achieved with acoustic, photoelectric, strain, and chemical sensing. For energy management, fiber-based devices are enabled with the functions of passive temperature regulation and energy generation/storage. Thermal-drawn fibers have also been widely used as neural probes because of their flexibility, small size, and conductive property. In addition, semiconductor diodes and integrated circuits have been integrated into thermal-drawn fibers successfully, which empowers the fibers with the abilities of logical computing and information interaction.
Conclusion and Prospect This work focuses on the research progress and application fields of thermal-drawn multimaterial fiber, reviews the regulation of the micro/nanostructures inside the fibers by thermal drawing, and discusses their applications in sensing, energy, biology and others with recent studies.
However, there are still some limitations to thermal-drawn multimaterial fiber optoelectronics. 1) Only a few of materials and structures are investigated and applied into the system. 2) The mechanical properties and comfort of wearing of thermal-drawn fibers need to be improved. 3) It is still difficult to integrate multiple functions into one fiber. 4) The abilities of logical calculation and data management of the thermal-drawn fibers should be enhanced.
The future research trends of thermal-drawn multimaterial optoelectronic fibers are discussed from five aspects: more material selection, complex fiber structure, textile processing, multi-function integration, and artificial intelligence. It is foreseen that current mono-functional thermal-drawn multimaterial optoelectronic fibers can be improved for higher integrations, better mechanical properties, and more intelligence. These advanced fibers can also be combined with conventional textiles to enable their functionalities, comfort of wearing, and applicability to scenarios.

Key words: thermal drawing process, multimaterial fiber, fiber optoelectronics, micro- and nano-structure, functional fiber, intelligent fiber

Fig.1

Schematic diagrams of thermal-drawn multimaterial optoelectronic fibers with micro-nano structures. (a)Photonic bandgap fiber; (b)Nanowires inside fiber; (c)Structured microspheres inside fiber;(d)Nanorods inside fiber; (e)Fiber surface patterning; (f)Porous fiber"

Fig.2

Applications and prospects of thermal-drawn multimaterial optoelectronics fibers in different scenarios and prospects"

[1] RAMAMOORTHY S K, SKRIFVARS M, PERSSON A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers[J]. Polymer Reviews, 2015, 55(1): 107-162.
doi: 10.1080/15583724.2014.971124
[2] WILSON J. Fibres, yarns and fabrics: fundamental principles for the textile designer[M]// Textile design. [S.l.]: Woodhead Publishing, 2011: 3-30.
[3] YAN W, DONG C, XIANG Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics[J]. Materials Today, 2020, 35: 168-194.
doi: 10.1016/j.mattod.2019.11.006
[4] CUSANO A, CONSALES M, CRESCITELLI A, et al. Lab-on-fiber technology[M]. [S.l.]: Springer International Publishing, 2015: 1-20.
[5] TEMELKURAN B, HART S D, BENOIT G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916): 650-653.
doi: 10.1038/nature01275
[6] HART S D, MASKALY G R, TEMELKURAN B, et al. External reflection from omnidirectional dielectric mirror fibers[J]. Science, 2002, 296(5567): 510-513.
pmid: 11964473
[7] WANG X, JIAO K, SI N, et al. Extruded seven-core tellurium chalcogenide fiber for mid-infrared[J]. Optical Materials Express, 2019, 9(9): 3863-3870.
doi: 10.1364/OME.9.003863
[8] DENG D S, ORF N D, ABOURADDY A F, et al. In-fiber semiconductor filament arrays[J]. Nano Letters, 2008, 8(12): 4265-4269.
doi: 10.1021/nl801979w pmid: 19367844
[9] KAUFMAN J J, TAO G, SHABAHANG S, et al. Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires[J]. Nano Letters, 2011, 11(11): 4768-4773.
doi: 10.1021/nl202583g pmid: 21967545
[10] YAN W, RICHARD I, KURTULDU G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios[J]. Nature Nanotechnology, 2020, 15(10): 875-882.
doi: 10.1038/s41565-020-0747-9
[11] KAUFMAN J J, OTTMAN R, TAO G, et al. In-fiber production of polymeric particles for biosensing and encapsulation[J]. Proceedings of the National Academy of Sciences, 2013, 110(39): 15549-15554.
doi: 10.1073/pnas.1310214110
[12] TAO G, KAUFMAN J J, SHABAHANG S, et al. Digital design of multimaterial photonic particles[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6839-6844.
doi: 10.1073/pnas.1601777113
[13] KAUFMAN J J, TAO G, SHABAHANG S, et al. Structured spheres generated by an in-fibre fluid instability[J]. Nature, 2012, 487(7408): 463-467.
doi: 10.1038/nature11215
[14] GUMENNIK A, WEI L, LESTOQUOY G, et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities[J]. Nature Communications, 2013, 4(1): 1-8.
[15] WEI L, HOU C, LEVY E, et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities[J]. Advanced Materials, 2017. DOI:10.1002/adma.201603033.
doi: 10.1002/adma.201603033
[16] ZHANG J, WANG Z, WANG Z, et al. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[17] ZHENG Z, FELDMAN D. Synthetic fibre-reinforced concrete[J]. Progress in Polymer Science, 1995, 20(2): 185-210.
doi: 10.1016/0079-6700(94)00030-6
[18] SHABAHANG S, TAO G, KAUFMAN J J, et al. Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing[J]. Nature, 2016, 534(7608): 529-533.
doi: 10.1038/nature17980
[19] KHUDIYEV T, HOU C, STOLYAROV A M, et al. Sub-micrometer surface-patterned ribbon fibers and textiles[J]. Advanced Materials, 2017. DOI:10.1002/adma.201605868.
doi: 10.1002/adma.201605868
[20] WANG Z, WU T, WANG Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7
[21] DONG C, LEBER A, DAS GUPTA T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7
[22] TOUSI M M, ZHANG Y, WAN S, et al. Scalable fabrication of highly flexible porous polymer-based capacitive humidity sensor using convergence fiber drawing[J]. Polymers, 2019. DOI:10.3390/polym11121985.
doi: 10.3390/polym11121985
[23] SHAHRIARI D, LOKE G, TAFEL I, et al. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries[J]. Advanced Materials, 2019. DOI:10.1002/adma.201902021.
doi: 10.1002/adma.201902021
[24] GRENA B, ALAYRAC J B, LEVY E, et al. Thermally-drawn fibers with spatially-selective porous domains[J]. Nature Communications, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6
[25] EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8): 643-648.
doi: 10.1038/nmat2792 pmid: 20622864
[26] CHOCAT N, LESTOQUOY G, WANG Z, et al. Piezoelectric fibers for conformal acoustics[J]. Advanced Materials, 2012, 24(39): 5327-5332.
doi: 10.1002/adma.201201355
[27] WANG S, ZHANG T, LI K, et al. Flexible piezoelectric fibers for acoustic sensing and positioning[J]. Advanced Electronic Materials, 2017. DOI:10.1002/aelm.201600449.
doi: 10.1002/aelm.201600449
[28] YAN W, NOEL G, LOKE G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations[J]. Nature, 2022, 603(7902): 616-623.
doi: 10.1038/s41586-022-04476-9
[29] ABOURADDY A F, SHAPIRA O, BAYINDIR M, et al. Large-scale optical-field measurements with geometric fibre constructs[J]. Nature Materials, 2006, 5(7): 532-536.
pmid: 16799549
[30] BAYINDIR M, SHAPIRA O, SAYGIN-HINCZEWSKI D, et al. Integrated fibres for self-monitored optical transport[J]. Nature Materials, 2005, 4(11): 820-825.
doi: 10.1038/nmat1512
[31] BAYINDIR M, SORIN F, ABOURADDY A F, et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 2004, 431(7010): 826-829.
doi: 10.1038/nature02937
[32] SORIN F, SHAPIRA O, ABOURADDY A F, et al. Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber[J]. Nano Letters, 2009, 9(7): 2630-2635.
doi: 10.1021/nl9009606 pmid: 19527043
[33] REIN M, LEVY E, GUMENNIK A, et al. Self-assembled fibre optoelectronics with discrete translational symmetry[J]. Nature Communications, 2016, 7(1): 1-8.
[34] DAI Y, DU M, FENG X, et al. Microstructured multimaterial fibers for efficient optical detection[J]. Journal of the American Ceramic Society, 2021, 104(8): 4058-4064.
doi: 10.1111/jace.17827
[35] LOKE G, YUAN R, REIN M, et al. Structured multimaterial filaments for 3D printing of optoelectronics[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[36] CHEN M, WANG Z, ZHANG Q, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing[J]. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w
[37] LEBER A, PAGE A G, YAN D, et al. Compressible and electrically conducting fibers for large-area sensing of pressures[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201904274.
doi: 10.1002/adfm.201904274
[38] MA Y, OUYANG J, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy, 2021. DOI:10.1016/j.nanoen.2021.105941.
doi: 10.1016/j.nanoen.2021.105941
[39] YU L, PARKER S, XUAN H, et al. Flexible multi-material fibers for distributed pressure and temperature sensing[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201908915.
doi: 10.1002/adfm.201908915
[40] NGUYEN-DANG T, PAGE A G, QU Y, et al. Multi-material micro-electromechanical fibers with bendable functional domains[J]. Journal of Physics D: Applied Physics, 2017. DOI:10.1088/1361-6463/aa5bf7.
doi: 10.1088/1361-6463/aa5bf7
[41] QU Y, NGUYEN-DANG T, PAGE A G, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 2018. DOI:10.1002/adma.201707251.
doi: 10.1002/adma.201707251
[42] LEBER A, DONG C, CHANDRAN R, et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 2020, 3(6): 316-326.
doi: 10.1038/s41928-020-0415-y
[43] GUMENNIK A, STOLYAROV A M, SCHELL B R, et al. All-in-fiber chemical sensing[J]. Advanced Materials, 2012, 24(45): 6005-6009.
doi: 10.1002/adma.201203053
[44] RICHARD I, SCHYRR B, AIASSA S, et al. All-in-fiber electrochemical sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43356-43363.
[45] WU J, HU R, ZENG S, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022.
[46] ZHANG T, LI K, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41: 35-42.
doi: 10.1016/j.nanoen.2017.09.019
[47] ZHANG J, ZHANG T, ZHANG H, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics[J]. Advanced Materials, 2020. DOI:10.1002/adma.202002702.
doi: 10.1002/adma.202002702
[48] ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954
[49] WANG R, DU Z, XIA Z, et al. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202107682.
doi: 10.1002/adfm.202107682
[50] KHUDIYEV T, GRENA B, LOKE G, et al. Thermally drawn rechargeable battery fiber enables pervasive power[J]. Materials Today, 2022, 52: 80-89.
doi: 10.1016/j.mattod.2021.11.020
[51] YANG J, WANG Z, WANG Z, et al. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12801-12808.
[52] YANG J, ZHANG Q, WANG Z, et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296
[53] PARK S, YUK H, ZHAO R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23802-9.
doi: 10.1038/s41467-021-23802-9
[54] GUO Y, JIANG S, GRENA B J B, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces[J]. ACS Nano, 2017, 11(7): 6574-6585.
doi: 10.1021/acsnano.6b07550 pmid: 28570813
[55] LU C, FRORIEP U P, KOPPES R A, et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo[J]. Advanced Functional Materials, 2014, 24(42): 6594-6600.
doi: 10.1002/adfm.201401266
[56] LU C, PARK S, RICHNER T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017. DOI:10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296
[57] PARK S, GUO Y, JIA X, et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 2017, 20(4): 612-619.
doi: 10.1038/nn.4510 pmid: 28218915
[58] DU M, HUANG L, ZHENG J, et al. Flexible fiber probe for efficient neural stimulation and detection[J]. Advanced Science, 2020. DOI:10.1002/advs.202001410.
doi: 10.1002/advs.202001410
[59] CHIN A L, JIANG S, JANG E, et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-25391-z.
doi: 10.1038/s41467-021-25391-z
[60] CANALES A, JIA X, FRORIEP U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 2015, 33(3): 277-284.
doi: 10.1038/nbt.3093 pmid: 25599177
[61] ANTONINI M J, SAHASRABUDHE A, TABET A, et al. Customizing MRI-compatible multifunctional neural interfaces through fiber drawing[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202104857.
doi: 10.1002/adfm.202104857
[62] JIANG S, PATEL D C, KIM J, et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface[J]. Nature Communications, 2020, 11(1): 1-14.
doi: 10.1038/s41467-019-13993-7
[63] REIN M, FAVROD V D, HOU C, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717): 214-218.
doi: 10.1038/s41586-018-0390-x
[64] LOKE G, KHUDIYEV T, WANG B, et al. Digital electronics in fibres enable fabric-based machine-learning inference[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23628-5.
doi: 10.1038/s41467-021-23628-5
[65] LOKE G, ALAIN J, YAN W, et al. Computing fabrics[J]. Matter, 2020, 2(4): 786-788.
doi: 10.1016/j.matt.2020.03.007
[66] CHEN M, JIANG Y, GUIZANI N, et al. Living with I-fabric: smart living powered by intelligent fabric and deep analytics[J]. IEEE Network, 2020, 34(5): 156-163.
[67] CHEN M, LI P, WANG R, et al. Multifunctional fiber-enabled intelligent health agents[J]. Advanced Materials, 2022. DOI:10.1002/adma.202200985.
doi: 10.1002/adma.202200985
[68] CHEN M, WANG R, ZHOU Y, et al. Digital medical education empowered by intelligent fabric space[J]. National Science Open, 2022. DOI:10.1360/nso/20220011.
doi: 10.1360/nso/20220011
[1] CHEN Chen, HAN Yi, SUN Haiyan, YAO Chengkai, GAO Chao. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof [J]. Journal of Textile Research, 2023, 44(01): 47-55.
[2] PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86.
[3] ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47.
[4] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[5] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[6] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[7] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[8] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[9] QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers [J]. Journal of Textile Research, 2019, 40(05): 170-176.
[10] WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31.
[11] . Integrating of soft intelligent textile and functional fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 160-169.
[12] . Bioactivities and applications of alginate fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 175-180.
[13] . Basic issues and development trends on general synthetic fibers with high functionalization [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 167-174.
[14] . Functional fibers based on graphene [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 153-157.
[15] Qin Yimin. Clinical applications of alginate wound dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 148-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!