Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 11-20.doi: 10.13475/j.fzxb.20220606310
• Invited Column: Frontiers of Textile Science and Technology • Previous Articles Next Articles
ZHANG Jing1, HUANG Zhiheng2, NIU Guangliang2, LIANG Sheng3, YANG Lüyun2, WEI Lei4, ZHOU Shifeng5, HOU Chong2,6, TAO Guangming2,7()
[1] |
RAMAMOORTHY S K, SKRIFVARS M, PERSSON A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers[J]. Polymer Reviews, 2015, 55(1): 107-162.
doi: 10.1080/15583724.2014.971124 |
[2] | WILSON J. Fibres, yarns and fabrics: fundamental principles for the textile designer[M]// Textile design. [S.l.]: Woodhead Publishing, 2011: 3-30. |
[3] |
YAN W, DONG C, XIANG Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics[J]. Materials Today, 2020, 35: 168-194.
doi: 10.1016/j.mattod.2019.11.006 |
[4] | CUSANO A, CONSALES M, CRESCITELLI A, et al. Lab-on-fiber technology[M]. [S.l.]: Springer International Publishing, 2015: 1-20. |
[5] |
TEMELKURAN B, HART S D, BENOIT G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916): 650-653.
doi: 10.1038/nature01275 |
[6] |
HART S D, MASKALY G R, TEMELKURAN B, et al. External reflection from omnidirectional dielectric mirror fibers[J]. Science, 2002, 296(5567): 510-513.
pmid: 11964473 |
[7] |
WANG X, JIAO K, SI N, et al. Extruded seven-core tellurium chalcogenide fiber for mid-infrared[J]. Optical Materials Express, 2019, 9(9): 3863-3870.
doi: 10.1364/OME.9.003863 |
[8] |
DENG D S, ORF N D, ABOURADDY A F, et al. In-fiber semiconductor filament arrays[J]. Nano Letters, 2008, 8(12): 4265-4269.
doi: 10.1021/nl801979w pmid: 19367844 |
[9] |
KAUFMAN J J, TAO G, SHABAHANG S, et al. Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires[J]. Nano Letters, 2011, 11(11): 4768-4773.
doi: 10.1021/nl202583g pmid: 21967545 |
[10] |
YAN W, RICHARD I, KURTULDU G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios[J]. Nature Nanotechnology, 2020, 15(10): 875-882.
doi: 10.1038/s41565-020-0747-9 |
[11] |
KAUFMAN J J, OTTMAN R, TAO G, et al. In-fiber production of polymeric particles for biosensing and encapsulation[J]. Proceedings of the National Academy of Sciences, 2013, 110(39): 15549-15554.
doi: 10.1073/pnas.1310214110 |
[12] |
TAO G, KAUFMAN J J, SHABAHANG S, et al. Digital design of multimaterial photonic particles[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6839-6844.
doi: 10.1073/pnas.1601777113 |
[13] |
KAUFMAN J J, TAO G, SHABAHANG S, et al. Structured spheres generated by an in-fibre fluid instability[J]. Nature, 2012, 487(7408): 463-467.
doi: 10.1038/nature11215 |
[14] | GUMENNIK A, WEI L, LESTOQUOY G, et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities[J]. Nature Communications, 2013, 4(1): 1-8. |
[15] |
WEI L, HOU C, LEVY E, et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities[J]. Advanced Materials, 2017. DOI:10.1002/adma.201603033.
doi: 10.1002/adma.201603033 |
[16] |
ZHANG J, WANG Z, WANG Z, et al. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8 |
[17] |
ZHENG Z, FELDMAN D. Synthetic fibre-reinforced concrete[J]. Progress in Polymer Science, 1995, 20(2): 185-210.
doi: 10.1016/0079-6700(94)00030-6 |
[18] |
SHABAHANG S, TAO G, KAUFMAN J J, et al. Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing[J]. Nature, 2016, 534(7608): 529-533.
doi: 10.1038/nature17980 |
[19] |
KHUDIYEV T, HOU C, STOLYAROV A M, et al. Sub-micrometer surface-patterned ribbon fibers and textiles[J]. Advanced Materials, 2017. DOI:10.1002/adma.201605868.
doi: 10.1002/adma.201605868 |
[20] |
WANG Z, WU T, WANG Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7 |
[21] |
DONG C, LEBER A, DAS GUPTA T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7 |
[22] |
TOUSI M M, ZHANG Y, WAN S, et al. Scalable fabrication of highly flexible porous polymer-based capacitive humidity sensor using convergence fiber drawing[J]. Polymers, 2019. DOI:10.3390/polym11121985.
doi: 10.3390/polym11121985 |
[23] |
SHAHRIARI D, LOKE G, TAFEL I, et al. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries[J]. Advanced Materials, 2019. DOI:10.1002/adma.201902021.
doi: 10.1002/adma.201902021 |
[24] |
GRENA B, ALAYRAC J B, LEVY E, et al. Thermally-drawn fibers with spatially-selective porous domains[J]. Nature Communications, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6 |
[25] |
EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8): 643-648.
doi: 10.1038/nmat2792 pmid: 20622864 |
[26] |
CHOCAT N, LESTOQUOY G, WANG Z, et al. Piezoelectric fibers for conformal acoustics[J]. Advanced Materials, 2012, 24(39): 5327-5332.
doi: 10.1002/adma.201201355 |
[27] |
WANG S, ZHANG T, LI K, et al. Flexible piezoelectric fibers for acoustic sensing and positioning[J]. Advanced Electronic Materials, 2017. DOI:10.1002/aelm.201600449.
doi: 10.1002/aelm.201600449 |
[28] |
YAN W, NOEL G, LOKE G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations[J]. Nature, 2022, 603(7902): 616-623.
doi: 10.1038/s41586-022-04476-9 |
[29] |
ABOURADDY A F, SHAPIRA O, BAYINDIR M, et al. Large-scale optical-field measurements with geometric fibre constructs[J]. Nature Materials, 2006, 5(7): 532-536.
pmid: 16799549 |
[30] |
BAYINDIR M, SHAPIRA O, SAYGIN-HINCZEWSKI D, et al. Integrated fibres for self-monitored optical transport[J]. Nature Materials, 2005, 4(11): 820-825.
doi: 10.1038/nmat1512 |
[31] |
BAYINDIR M, SORIN F, ABOURADDY A F, et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 2004, 431(7010): 826-829.
doi: 10.1038/nature02937 |
[32] |
SORIN F, SHAPIRA O, ABOURADDY A F, et al. Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber[J]. Nano Letters, 2009, 9(7): 2630-2635.
doi: 10.1021/nl9009606 pmid: 19527043 |
[33] | REIN M, LEVY E, GUMENNIK A, et al. Self-assembled fibre optoelectronics with discrete translational symmetry[J]. Nature Communications, 2016, 7(1): 1-8. |
[34] |
DAI Y, DU M, FENG X, et al. Microstructured multimaterial fibers for efficient optical detection[J]. Journal of the American Ceramic Society, 2021, 104(8): 4058-4064.
doi: 10.1111/jace.17827 |
[35] |
LOKE G, YUAN R, REIN M, et al. Structured multimaterial filaments for 3D printing of optoelectronics[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8 |
[36] |
CHEN M, WANG Z, ZHANG Q, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing[J]. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w |
[37] |
LEBER A, PAGE A G, YAN D, et al. Compressible and electrically conducting fibers for large-area sensing of pressures[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201904274.
doi: 10.1002/adfm.201904274 |
[38] |
MA Y, OUYANG J, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy, 2021. DOI:10.1016/j.nanoen.2021.105941.
doi: 10.1016/j.nanoen.2021.105941 |
[39] |
YU L, PARKER S, XUAN H, et al. Flexible multi-material fibers for distributed pressure and temperature sensing[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201908915.
doi: 10.1002/adfm.201908915 |
[40] |
NGUYEN-DANG T, PAGE A G, QU Y, et al. Multi-material micro-electromechanical fibers with bendable functional domains[J]. Journal of Physics D: Applied Physics, 2017. DOI:10.1088/1361-6463/aa5bf7.
doi: 10.1088/1361-6463/aa5bf7 |
[41] |
QU Y, NGUYEN-DANG T, PAGE A G, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 2018. DOI:10.1002/adma.201707251.
doi: 10.1002/adma.201707251 |
[42] |
LEBER A, DONG C, CHANDRAN R, et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 2020, 3(6): 316-326.
doi: 10.1038/s41928-020-0415-y |
[43] |
GUMENNIK A, STOLYAROV A M, SCHELL B R, et al. All-in-fiber chemical sensing[J]. Advanced Materials, 2012, 24(45): 6005-6009.
doi: 10.1002/adma.201203053 |
[44] | RICHARD I, SCHYRR B, AIASSA S, et al. All-in-fiber electrochemical sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43356-43363. |
[45] | WU J, HU R, ZENG S, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022. |
[46] |
ZHANG T, LI K, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41: 35-42.
doi: 10.1016/j.nanoen.2017.09.019 |
[47] |
ZHANG J, ZHANG T, ZHANG H, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics[J]. Advanced Materials, 2020. DOI:10.1002/adma.202002702.
doi: 10.1002/adma.202002702 |
[48] |
ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954 |
[49] |
WANG R, DU Z, XIA Z, et al. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202107682.
doi: 10.1002/adfm.202107682 |
[50] |
KHUDIYEV T, GRENA B, LOKE G, et al. Thermally drawn rechargeable battery fiber enables pervasive power[J]. Materials Today, 2022, 52: 80-89.
doi: 10.1016/j.mattod.2021.11.020 |
[51] | YANG J, WANG Z, WANG Z, et al. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12801-12808. |
[52] |
YANG J, ZHANG Q, WANG Z, et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296 |
[53] |
PARK S, YUK H, ZHAO R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23802-9.
doi: 10.1038/s41467-021-23802-9 |
[54] |
GUO Y, JIANG S, GRENA B J B, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces[J]. ACS Nano, 2017, 11(7): 6574-6585.
doi: 10.1021/acsnano.6b07550 pmid: 28570813 |
[55] |
LU C, FRORIEP U P, KOPPES R A, et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo[J]. Advanced Functional Materials, 2014, 24(42): 6594-6600.
doi: 10.1002/adfm.201401266 |
[56] |
LU C, PARK S, RICHNER T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017. DOI:10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296 |
[57] |
PARK S, GUO Y, JIA X, et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 2017, 20(4): 612-619.
doi: 10.1038/nn.4510 pmid: 28218915 |
[58] |
DU M, HUANG L, ZHENG J, et al. Flexible fiber probe for efficient neural stimulation and detection[J]. Advanced Science, 2020. DOI:10.1002/advs.202001410.
doi: 10.1002/advs.202001410 |
[59] |
CHIN A L, JIANG S, JANG E, et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-25391-z.
doi: 10.1038/s41467-021-25391-z |
[60] |
CANALES A, JIA X, FRORIEP U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 2015, 33(3): 277-284.
doi: 10.1038/nbt.3093 pmid: 25599177 |
[61] |
ANTONINI M J, SAHASRABUDHE A, TABET A, et al. Customizing MRI-compatible multifunctional neural interfaces through fiber drawing[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202104857.
doi: 10.1002/adfm.202104857 |
[62] |
JIANG S, PATEL D C, KIM J, et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface[J]. Nature Communications, 2020, 11(1): 1-14.
doi: 10.1038/s41467-019-13993-7 |
[63] |
REIN M, FAVROD V D, HOU C, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717): 214-218.
doi: 10.1038/s41586-018-0390-x |
[64] |
LOKE G, KHUDIYEV T, WANG B, et al. Digital electronics in fibres enable fabric-based machine-learning inference[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23628-5.
doi: 10.1038/s41467-021-23628-5 |
[65] |
LOKE G, ALAIN J, YAN W, et al. Computing fabrics[J]. Matter, 2020, 2(4): 786-788.
doi: 10.1016/j.matt.2020.03.007 |
[66] | CHEN M, JIANG Y, GUIZANI N, et al. Living with I-fabric: smart living powered by intelligent fabric and deep analytics[J]. IEEE Network, 2020, 34(5): 156-163. |
[67] |
CHEN M, LI P, WANG R, et al. Multifunctional fiber-enabled intelligent health agents[J]. Advanced Materials, 2022. DOI:10.1002/adma.202200985.
doi: 10.1002/adma.202200985 |
[68] |
CHEN M, WANG R, ZHOU Y, et al. Digital medical education empowered by intelligent fabric space[J]. National Science Open, 2022. DOI:10.1360/nso/20220011.
doi: 10.1360/nso/20220011 |
[1] | CHEN Chen, HAN Yi, SUN Haiyan, YAO Chengkai, GAO Chao. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof [J]. Journal of Textile Research, 2023, 44(01): 47-55. |
[2] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
[3] | ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47. |
[4] | LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18. |
[5] | XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24. |
[6] | GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10. |
[7] | XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43. |
[8] | WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23. |
[9] | QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers [J]. Journal of Textile Research, 2019, 40(05): 170-176. |
[10] | WANG Yan, WANG Lianjun, CHEN Jianfang. Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31. |
[11] | . Integrating of soft intelligent textile and functional fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 160-169. |
[12] | . Bioactivities and applications of alginate fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 175-180. |
[13] | . Basic issues and development trends on general synthetic fibers with high functionalization [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 167-174. |
[14] | . Functional fibers based on graphene [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 153-157. |
[15] | Qin Yimin. Clinical applications of alginate wound dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 148-0. |
|