Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 232-239.doi: 10.13475/j.fzxb.20220607302
• Comprehensive Review • Previous Articles Next Articles
SONG Gongji1, WANG Yuyu1, WANG Shanlong1, WANG Jiannan1,2, XU Jianmei1,2()
CLC Number:
[1] |
JIN J, LIMBURG S, JOSHI S K, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor[J]. Tissue Eng Part A, 2013, 19(19/20): 2138-2146.
doi: 10.1089/ten.tea.2012.0575 |
[2] |
VIJAYAVENKATARAMAN S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods[J]. Acta Biomaterialia, 2020, 106: 54-69.
doi: S1742-7061(20)30081-7 pmid: 32044456 |
[3] | 孙国平, 罗选翔, 潘彬. 人工神经导管治疗周围神经损伤的材料类型和应用现状[J]. 中国骨与关节损伤杂志, 2021, 36(3): 334-336. |
SUN Guoping, LUO Xuanxiang, PAN Bin. Material types and application status of artificial nerve conduits for peripheral nerve injury[J]. Chinese Journal of Bone and Joint, 2021, 36(3): 334-336. | |
[4] | 马丕波, 梅德轩. 生物医用纺织材料研究应用与进展[J]. 服装学报, 2022, 7(3): 189-195. |
MA Pibo, MEI Dexuan. Research, application and progress of biomedical textile materials[J]. Journal of Clothing Research, 2022, 7(3): 189-195. | |
[5] |
MOSKOW J, FERRIGNO B, MISTRY N, et al. Review: bioengineering approach for the repair and regeneration of peripheral nerve[J]. Bioactive Materials, 2019, 4: 107-113.
doi: 10.1016/j.bioactmat.2018.09.001 pmid: 30723843 |
[6] |
AHN H S, HWANG J Y, KIM M S, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve[J]. Acta Biomaterialia, 2015, 13: 324-334.
doi: 10.1016/j.actbio.2014.11.026 |
[7] | REDONDO-GOMEZ C, LEANDRO-MORA R, BLANCH-BERMUDEZ D, et al. Recent advances in carbon nanotubes for nervous tissue regeneration[J]. Advances in Polymer Technology, 2020 (9): 1098-2329. |
[8] | CARVALHO C R, OLIVEIRA J M, REIS R L. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit[J]. Frontiers in Bioengineering and Biotechnology, 2019. DOI: 10.3389/fbioe.2019.00337. |
[9] | RATHINAVEL S, PRIYADHARSHINI K, PANDA D. A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering, 2021. DOI:10.1016/jmseb.2021.115095. |
[10] | SERPELL C J, KOSTARELOS K, DAVIS B G. Can carbon nanotubes deliver on their promise in biology harnessing unique properties for unparalleled applications[J]. ACS Combinatorial Science, 2016, 2(4): 190-200. |
[11] |
PAMPALONI N P, RAGO I, CALARESU I, et al. Transparent carbon nanotubes promote the outgrowth of enthorino-entate projections in lesioned organ slice cultures[J]. Developmental Neurobiology, 2019, 80(9/10): 316-331.
doi: 10.1002/dneu.v80.9pt10 |
[12] |
FABBRO A, PRATO M, BALLERINI L. Carbon nanotubes in neuroregeneration and repair[J]. Advanced Drug Delivery Reviews, 2013, 65(15): 2034-2044.
doi: 10.1016/j.addr.2013.07.002 pmid: 23856411 |
[13] | DVIR T, TIMKO B P, KOHANE D S, et al. Nanotechnological strategies for engineering complex tissues[J]. Nanotechnol, 2011, 6(1):13-22. |
[14] | SORKIN R, GREENBAUM A, DAVID-PUR M, et al. Process entanglement as a neuronal anchorage mechanism to rough surfaces[J]. Nanotechnology, 2009. DOI:10.1088/0957-4484/20/1/015101. |
[15] | MAZZATENTA A, GIUGLIANO M, CAMPIDELLI S, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits[J]. The Journal of Neuroscience, 2007, 26: 6931-6936. |
[16] | ZHU W, YE T, LEE S J, et al. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation[J]. Nanomedicine Nanotechnology Biology & Medicine, 2017, 14(7): 2485-2494. |
[17] |
RAY W Z, MAHAN M A, GUO D Z, et al. An update on addressing important peripheral nerve problems: challenges and potential solutions[J]. Acta Neurochirurgica, 2017, 159(9): 1765-1773.
doi: 10.1007/s00701-017-3203-3 |
[18] |
MALARKEY E B, FISHER K A, BEKYAROVA E, et al. Conductive single-walled carbon nanotube substrates modulate neuronal growth[J]. Nano Letters, 2009, 9: 264-268.
doi: 10.1021/nl802855c pmid: 19143503 |
[19] |
MATTSON M P, HADDON R C, RAO A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J]. Journal of Molecular Neuroscience, 2000, 14: 175-182.
doi: 10.1385/JMN:14:3:175 pmid: 10984193 |
[20] |
ZHANG X, PRASAD S, NIYOGI S, et al. Guided neurite growth on patterned carbon nanotubes[J]. Sens and Actuators, 2005, 106: 843-850.
doi: 10.1016/j.snb.2004.10.039 |
[21] | KANG S, HERZBERG M, RODRIGUES D F, et al. Antibacterial effects of carbon nanotubes: size does matter[J]. ACS Journal of Surfaces & Colloids, 2008, 24(13): 6409-6413. |
[22] |
ZHAO M L, LI D J, YUAN L, et al. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes[J]. Carbon, 2011, 49(9): 3125-3133.
doi: 10.1016/j.carbon.2011.03.037 |
[23] | MOTTAGHITALAB F, FAROKHI M, ZAMINY A, et al. A biosynthetic nerve guide conduit based on silk/SWCNT/fibronectin nanocomposite for peripheral nerve regeneration[J]. Plos One, 2013, 8(9): 56-65. |
[24] | LI S S, HE H, JIAO Q C, et al. Applications of carbon nanotubes in drug and gene delivery[J]. Progress in Chemistry, 2008, 20(11): 1798-1803. |
[25] | YU W W, JIANG X Q, CAI M, et al. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration[J]. Nanotechnology, 2014. DOI:10.1088/0957-4484/25/16/165102. |
[26] |
HWANG J Y, SHIN U S, JANG W C, et al. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review[J]. Nanoscale, 2013, 5: 487-497.
doi: 10.1039/C2NR31581E |
[27] |
CENGIZ B, SANYAL R, SANYAL A. Tailoring aqueous dispersibility and biofunctionalization of carbon nanotubes using maleimide-containing clickable poly-mers[J]. ACS Applied Polymer Materials, 2021, 3: 5707-5716.
doi: 10.1021/acsapm.1c00977 |
[28] |
HU H, NI Y C, MONTANA V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth[J]. Nano Lett, 2004, 4: 507-511.
doi: 10.1021/nl035193d pmid: 21394241 |
[29] |
HEISTER E, LAMPRECHT C, NEVES V, et al. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments[J]. ACS Nano, 2010, 4(5): 2615-2626.
doi: 10.1021/nn100069k pmid: 20380453 |
[30] |
ROMAN J A, NIEDZIELKO T L, HADDON R C, et al. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury[J]. Neurotrauma, 2011, 28: 2349-2362.
doi: 10.1089/neu.2010.1409 |
[31] |
LACERDA L, BIANCO A, PRATO M, et al. Carbon nanotubes as nanomedicines: from toxicology to pharmacology[J]. Advanced Drug Delivery Reviews, 2006, 58(14):1460-1470.
doi: 10.1016/j.addr.2006.09.015 pmid: 17113677 |
[32] |
PATI F, GANTELIUS J, SVAHN H A. 3D bioprinting of tissue/organ models[J]. Angew Chem Int Ed Engl, 2016, 55(15): 4650-4665.
doi: 10.1002/anie.v55.15 |
[33] |
XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938 |
[34] |
CHEN Z Z, LI D C, LU B H, et al. Fabrication of artificial bioactive bone using rapid prototyping[J]. Rapid Prototyping Journal, 2004, 10(5): 327-333.
doi: 10.1108/13552540410562368 |
[35] | LEE S J, ZHU W, NOWICKI M, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration[J]. Journal of Neural Engineering, 2018, 15(1): 16-18. |
[36] |
ZHOU Z F, LIU X F, WU W, et al. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds[J]. Biomaterials Science, 2018, 6: 2375-2385.
doi: 10.1039/c8bm00553b pmid: 30019709 |
[37] |
ZANG R, YANG S T. Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells[J]. Journal of Materials Chemistry B, 2013, 1(5): 646-653.
doi: 10.1039/c2tb00157h pmid: 32260768 |
[38] | RIBEIRO J, CASEIRO A R, PEREIRA T. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model[J]. Journal of Biomedical Materials Researc, 2017, 105(5): 1267-1280. |
[39] | 孙洪吉. 胶原/碳纳米管复合物薄膜对胚胎大鼠皮层神经元突起发育和神经干细胞分化的影响[D]. 北京: 中国人民解放军医学院, 2014: 17-36. |
SUN Hongji. The effect of collegan-carbon nanotube composite film on embryonic cortical neurons development and neural stem cell differentiation[D]. Beijing: Chinese People's Liberation Army Medical College, 2014: 17-36. | |
[40] | JOSEPH J, KRISHNAN A G, CHERIAN A M, et al. Transforming nanofibers into woven nanotextiles for vascular application[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19449-19458. |
[41] | MATSUMOTO K, SATO C, NAKA Y, et al. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes[J]. Nanotechnology, 2010. DOI: 10.1088/0957-4484/21/11/115101. |
[42] |
BARREJON M, MARCHESAN S, ALEGRET N, et al. [LL]Carbon nanotubes for cardiac tissue regeneration: state of the art and perspectives[J]. Carbon, 2021, 184:641-650.
doi: 10.1016/j.carbon.2021.08.059 |
[43] | JORDE L, LI Z H, POPPELWERTH A. Biofunctionalization of carbon nanotubes for reversible site-specific protein immobilization[J]. Journal of Applied Physics, 2021. DOI:10.1063/5.0035871. |
[44] | ZHOU Y, FANG Y, RAMASAMY R P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development[J]. Sensors, 2019. DOI: 10.3390/s19020392. |
[45] |
KOSTARELOS K, BIANCO A, PRATO M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics[J]. Nature Nanotechnology, 2020, 4(10): 627-633.
doi: 10.1038/nnano.2009.241 |
[46] |
ZHU Y Z, LIU X M, YEUNG K W K, et al. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructurest[J]. Applied Surface Science, 2017, 400: 14-23.
doi: 10.1016/j.apsusc.2016.12.158 |
[47] | DI W, PAK E S, WINGARD C J, et al. Multiwalled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice[J]. Neuroence Letters, 2012, 507(1):72-77. |
[1] | HUANG Jinbo, SHAO Lingda, ZHU Chengyan. Preparation of carbonized three-dimensional spacer cotton fabric and its electrical heating properties [J]. Journal of Textile Research, 2023, 44(04): 139-145. |
[2] | ZHANG Shaoyue, YUE Jiangyu, YANG Jiale, CHAI Xiaoshuai, FENG Zengguo, ZHANG Aiying. Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes [J]. Journal of Textile Research, 2023, 44(03): 11-18. |
[3] | LI Long, WU Lei, LIN Siling. Influence of yarn twist on properties of cotton/spandex/silver wire core spun yarns [J]. Journal of Textile Research, 2023, 44(01): 100-105. |
[4] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
[5] | CHU Yanyan, LI Shichen, CHEN Chao, LIU Yingying, HUANG Weihan, ZHANG Yue, CHEN Xiaogang. Research progress in bulletproof flexible textile materials and structures [J]. Journal of Textile Research, 2022, 43(12): 203-212. |
[6] | LOU Huiqing, ZHU Feichao, LI Leilei, DING Huilong, PU Dandan, WANG Xiangfei. Preparation and electrochemical performance of composite carbon nanotube/Ni/polyaniline fibrous supercapacitor [J]. Journal of Textile Research, 2022, 43(11): 35-40. |
[7] | XUE Chao, ZHU Hao, YANG Xiaochuan, REN Yu, LIU Wanwan. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers [J]. Journal of Textile Research, 2022, 43(07): 29-35. |
[8] | QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66. |
[9] | NIE Wenqi, SUN Jiangdong, XU Shuai, ZHENG Xianhong, XU Zhenzhen. Research progress in supercapacitors based on flexible textile fibers [J]. Journal of Textile Research, 2022, 43(07): 200-206. |
[10] | YAO Mingyuan, LIU Ningjuan, WANG Jianing, XU Fujun, LIU Wei. Electrothermal properties of functionalization carbon nanotube composite films and films twisted yarns [J]. Journal of Textile Research, 2022, 43(05): 86-91. |
[11] | LU Qianqian, TANG Junxiong, LIU Yuanjun, ZHAO Xiaoming. Research progress in preparation of carbon nanotubes based wave absorbing composites and its applications in textile field [J]. Journal of Textile Research, 2022, 43(04): 187-193. |
[12] | XU Xiaotong, JIANG Zhenlin, ZHENG Qinchao, ZHU Keyu, WANG Chaosheng, KE Fuyou. Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate [J]. Journal of Textile Research, 2022, 43(03): 44-49. |
[13] | ZHANG Qingsong, ZHANG Yingchen, QIU Zhenzhong, WU Hongyan, ZHANG Zhiru, ZHANG Xia'nan. Mechanism research and development of moisture absorbing cool feeling fabrics [J]. Journal of Textile Research, 2022, 43(02): 132-139. |
[14] | GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80. |
[15] | XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75. |
|