Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (12): 225-232.doi: 10.13475/j.fzxb.20220701302

• Comprehensive Review • Previous Articles     Next Articles

Research progress in electret technology for melt-blown nonwovens

MENG Na1, WANG Xianfeng1,2(), LI Zhaoling1, YU Jianyong2, DING Bin2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-12-05 Revised:2023-09-06 Online:2023-12-15 Published:2024-01-22

Abstract:

Significance Industrial development caused air pollution. Parallel to the effort of control air pollution, it has become necessary and important to have materials which is capable of filtering the polluted air for people to breathe clean air. The most direct and effective way to achieve this goal is to use air purifiers, masks, and other related filtering equipment. The outbreak and spread of COVID-19 pandemic in recent years have brought great challenges to global public health protection, and various countries took various protective measures. Filtering materials with low air resistance, high filtration efficiency, and high charge storage stability have attracted much attention, and the market demand has been growing. Safety protection articles such as masks, protective clothing, and respirators have become indispensable pandemic prevention materials and for normal epidemic prevention. Melt-blown nonwovens, as the key materials of protective articles, have attracted much attention in the research of melt-blown nonwovens with high efficiency, low resistance, and stable charge storage.
Progress In order to deeply understand the research status of the electret technology of melt-blown nonwovens, this paper systematically reviewed the electret technology for making melt-blown nonwovens, the electret effect of melt-blown nonwovens and the prospect of electret melt-blown nonwovens. The paper summarized the characteristics and mechanisms of six electret technologies, including corona charging, friction electrification, electrospinning, and water electret. The technology and application status of corona electret and water electret treatment were analyzed in the main. Additionally, the mechanism of electrostatic storage and its stability were introduced. Then the influence of electret material, electret process, and polymer crystal structure on the electrostatic storage performance of melt-blown nonwovens was also analyzed. Furthermore, in view of the challenges to electret technology, this paper summarized the development of new electret materials with multi-function and high-added value and the combination of multiple electret technologies as the main development direction of electret melt-blown nonwovens in the future.
Conclusion and Prospect With the continuous outbreak of global infectious diseases, awareness of health, safety, and protection is gradually enhanced, and the quality requirements for protective articles are constantly improved. The research and development of electret melt blown nonwovens with stable charge storage has become a scientific problem that needs to be solved urgently, which is of great significance to promoting the construction of emergency public health safety in the world. At present, electret melt blown nonwovens are made using mainly two processes, i.e., electrostatic electret and water electret. Researchers of electrostatic electret preparation methods have made some positive achievements, but the technical development and research of water electret need to be further explored. In general, with the development of new materials and the improvement of new technologies, electret melt-blown nonwovens with stable charge storage, longer service life, diverse functions, and good comfort will be more widely used in the fields of filter materials, barrier materials, medical and health materials, and so on. With the progress of information and digital technology, as well as the acceleration of industrialization and manufacturing power, intelligent, information-based, and digital electret melt blown nonwovens will also become a new trend of development. Improving the electrostatic storage and stability of electret melt blown nonwovens has also become an important and necessary work for industrial textile workers.

Key words: melt-blown process, nonwoven, electrostatic electret, water electret, charge storage property

CLC Number: 

  • TS174

Fig. 1

Schematic diagram of meltblown process"

Tab. 1

Electrostatic electret mechanism and process and characteristics"

驻极
方法
驻极机制及过程 特点
电晕充电 非均匀电场引起空气局部击穿,产生的离子束轰击电介质使材料带电 工业应用广泛
摩擦起电 物体接触摩擦时产生的热激发作用,使物体间发生电子转移带电 效率低
静电纺丝 在静电场中,高分子溶液或熔体流动与变形使材料带电 操作简单
热极化 电介质材料在高温电场下,经高温热活化的偶极子沿电场方向取向,进入低温电场后分子冻结取向带电 电荷分布不匀,温湿度的影响大
低能电子
束轰击
低能电子束轰击电介质,被电介质捕获并储存使材料带电 不易实现工业化
水驻极
充电
利用经过特殊处理过的水溶液对熔喷非织造布进行穿透,通过水溶液与纤维的摩擦带电 产生的电荷稳定、能耗高

Fig. 2

Mechanism of corona charging"

Fig. 3

Schematic diagram of water electret process"

Fig. 4

Electret charge storage model"

[1] NAZMUL Karim, SHAILA Afroj, KATE Lloyd, et al. Sustainable personal protective clothing for healthcare applications: a review[J]. ACS Nano, 2020, 14(10): 12313-12340.
doi: 10.1021/acsnano.0c05537
[2] CAMPOS Rafaelk, JIN Jing, RAFAEL Graceh, et al. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown polypropylene fabric using heat under different humidities[J]. ACS Nano, 2020, 14(10): 14017-14025.
doi: 10.1021/acsnano.0c06565
[3] 陈曦. 熔喷聚丙烯驻极体空气净化材料应用过程中几个关键问题研究[D]. 杭州: 杭州电子科技大学, 2018: 1-2.
CHEN Xi. Research on several key problems about meltblown polypropylene electret air purification materials in the process of application[D]. Hangzhou: University, 2018: 1-2.
[4] 陈谢宇. 水驻极与电晕驻极熔喷聚丙烯非织造过滤材料的制备及其性能研究[D]. 上海: 东华大学, 2022: 18-22.
CHEN Xieyu. Preparation and performance research of water electret and corona electret meltblown polypropylene nonwovenfilter materials for air filtration applications[D]. Shanghai: Donghua University, 2022: 18-22.
[5] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtrtion materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[6] LIU Chao, DAI Zijian, HE Bin, et al. The effect of temperature and humidity on the filtration performance of electret melt-blown nonwovens[J]. Materials, 2020. DOI: 10.3390/ma13214774.
[7] ZHANG Shichao, LIU Hui, ZUO Fenglei, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter[J]. Small, 2017. DOI: 10.1002/smll.201603151.
[8] 谢小军, 黄翔, 狄育慧. 驻极体空气过滤材料静电驻极方法初探[J]. 洁净与空调技术, 2005(2): 41-44.
XIE Xiaojun, HUANG Xiang, DI Yuhui. Disussion of electret air filtration material utilizing electrostatic electret[J]. Contamination Control & Air-conditioning Technology, 2005 (2): 41-44.
[9] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020 (8): 1-22.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Polymer Bulletin, 2020(8): 1-22.
[10] 杜琳, 张有忱, 杨卫民, 等. 熔体微分静电纺聚丙烯空气驻极体滤膜的制备及其性能[J]. 纺织学报, 2018, 39(10): 12-17.
DU Lin, ZHANG Youchen, YANG Weimin, et al. Preparation and properties of polypropylene air filter membrane by melt differential electrospinning[J]. Journal of Textile Research, 2018, 39(10): 12-17.
[11] 卢晨, 刘力, 王洪. 非织造驻极体电荷稳定性及驻极方法研究现状[J]. 化工新型材料, 2022, 50(1): 62-65.
LU Chen, LIU Li, WANG Hong. Research status of charge stability and charging method of nonwoven electret[J]. New Chemical Materials, 2022, 50(1): 62-65.
[12] MORENO Ra, GROSS Bernhard. Measurement of potential buildup and decay, surface charge density, and charging currents of corona-charged polymer foil electrets[J]. Journal of Applied Physics, 1976, 47(8): 3397-3402.
doi: 10.1063/1.323199
[13] 高猛, 王增元, 漏琦伟, 等. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(9): 51-58.
GAO Meng, WANG Zengyuan, LOU Qiwei, et al. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(9): 51-58.
doi: 10.1177/004051757204200109
[14] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Online prediction of the filtration performance of polypropylene melt blown nonwovens by blue-colored glow[J]. Journal of Applied Polymer Science, 2018. DOI: 10.1002/app.45948.
[15] 任煜, 李猛, 尤祥银. 驻极处理对聚乳酸熔喷材料性能的影响[J]. 纺织学报, 2015, 36(9): 13-17.
REN Yu, LI Meng, YOU Xiangyin. Influence of corona electret treatment on melt-blown PLA nonwovens mate-rial[J]. Journal of Textile Research, 2015, 36(9): 13-17.
[16] 于斌, 韩建, 余鹏程, 等. 驻极体对熔喷用PLA材料热性能及可纺性的影响[J]. 纺织学报, 2013, 34(2): 82-85.
YU Bin, HAN Jian, YU Pengcheng, et al. Effect of electret particles on thermal properties and spinnability of PLA meltblown materials[J]. Journal of Textile Research, 2013, 34(2): 82-85.
doi: 10.1177/004051756403400115
[17] 王行, 周平乐. 一种可产氢气和防雾的多功能高过滤低气阻驻极体口罩: 202121770435.6[P]. 2021-07-30.
WANG Xing, ZHOU Pingyue. A multi-functional electret mask with high filtration and low air resistance for hydrogen generation and fog prevention: 202121770435.6[P]. 2021-07-30.
[18] 陈苗苗, 曾泳春, 卢晨, 等. 水驻极熔喷非织造材料的制备与性能研究[J]. 高分子通报, 2022(2): 48-55.
CHEN Miaomiao, ZENG Yongchun, LU Chen, et al. Exploration of hydro-charging mechanism of melt blown nonwoven materials[J]. Polymer Bulletin, 2022(2): 48-55.
[19] 陈谢宇, 刘高慧, 董玉佳, 等. 熔喷聚丙烯水驻极非织造材料的制备及性能[J]. 纺织高校基础科学学报, 2022, 35(1): 24-33.
CHEN Xieyu, LIU Gaohui, DONG Yujia, et al. Preparation and properties of melt-blown polypropylene water electret nonwoven materials[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1): 24-33.
[20] IM Kyungbin, HONG Youngki. Development of a melt-blown nonwoven filter for medical masks by hydro charging[J]. Textile Science and Engineering, 2014, 51(4): 186-192.
doi: 10.12772/TSE.2014.51.186
[21] 姬苏倩, 朱政辉, 张菁. 不同驻极方式下聚丙烯熔喷非织造布的过滤性能[J]. 合成纤维, 2021, 50(3): 35-38.
JI Suqian, ZHU Zhenghui, ZHANG Jing. Research on filtration performance of polypropylene meltblown nonwovens under different electret modes[J]. Synthetic Fiber in China, 2021, 50(3): 35-38.
[22] 周文乾. 水驻极熔喷布的加工方法及喷水装置: 202011291253.0[P]. 2021-02-12.
ZHOU Wenqian. Processing method and water spraying device of water electret meltblown cloth: 202011291253.0[P]. 2021-02-12.
[23] 李君, 林娅丹, 李素君, 等. 节能水驻极熔喷布烘干系统: 202022334368.5[P]. 2021-10-15.
LI Jun, LIN Yadan, LI Sujun, et al. Energy-saving water electret melt-blown cloth drying system: 202022334368.5[P]. 2021-10-15.
[24] 唐相平, 林育政, 唐劲.塑料熔喷丝融合高压水雾丝形成强静电布的制备设备: 202010797751.6[P]. 2020-11-17.
TANG Xiangping, LIN Yuzheng, TANG Jin.Preparation equipment for plastic melt-blown filaments fused with high-pressure water mist filaments to form strong electrostatic cloth: 202010797751.6[P]. 2020-11-17.
[25] 张淑苹, 赵义侠, 钱子茂, 等. 熔喷非织造过滤材料驻极技术研究进展[J]. 毛纺科技, 2022, 50(5): 117-125.
ZHANG Shuping, ZHAO Yixia, QIAN Zimao, et al. Research progress on the electret technology of meltblown nonwoven filter materials[J]. Wool Textile Journal, 2022, 50(5): 117-125.
[26] 陈智, 陈钢进, 饶成平, 等. 聚丙烯薄膜的表面结构与驻极体性能相关性研究[J]. 功能材料, 2017, 48(8): 14-17.
CHEN Zhi, CHEN Gangjin, RAO Chengping, et al. Study on the correlation between surface structure and electret property for polypropylene film[J]. Journal of Functional Materials, 2017, 48(8): 14-17.
[27] 陈钢进, 饶成平, 肖慧明, 等. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究[J]. 物理学报, 2015, 64(23): 311-316.
CHEN Gangjin, RAO Chengping, XIAO Huiming, et al. Study on charge storage characteristics of PP film electret charged by interface polarization method[J]. Acta Physica Sinica, 2015, 64(23): 311-316.
[28] TISCHENKO V A, GUNKO V M. Water electret relaxation at dispersed silica surfaces[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 1995, 101(2): 287-294.
[29] ALI Kilic, EUNKYOUNG Shim, BEHNAM Pourdeyhimi. Electrostatic capture efficiency enhancement of polypropylene electret filters with barium titanate[J]. Aerosol Science & Technology, 2015, 49(8): 666-673.
[30] 刘凡, 陈元昆, 胡宝继, 等. 聚氨酯/SiO2驻极体纳米纤维的制备及其过滤性能[J]. 上海纺织科技, 2020, 440(2): 61-64.
LIU Fan, CHEN Yuankun, HU Baoji, et al. Preparation and filtration performance of polyurethane/SiO2 electret nanofibers[J]. Shanghai Textile Science & Technology, 2020, 440(2): 61-64.
[31] 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3): 486-493.
CAI Cheng, TANG Guoli, SONG Guolin, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 486-493.
[32] 王珊. 聚偏氟乙烯/聚四氟乙烯复合驻极纳米纤维膜的制备及其空气过滤性能研究[D]. 上海: 东华大学, 2017: 1-162.
WANG Shan. Electret polyvinylidene fluoride nanofibers/polytetrafluoroethylene composite fibrous membrane for air filtration[D]. Shanghai: Donghua Universuity, 2017: 1-162.
[33] 张玉霞, 王星光, 王文昭, 等. PLA/OMMT体系的结晶行为[J]. 塑料, 2013, 42(6): 1-4.
ZHANG Yuxia, WANG Xingguang, WANG Wenzhao, et al. Crystallization behavior of PLA/OMMT compo-site[J]. Plastics, 2013, 42(6): 1-4.
[34] LI Yuyao, YIN Xia, SI Yang, et al. All-polymer hybrid electret fibers for high-efficiency and low-resistance filter media[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125626.
[35] 刘妙峥, 吴海波. 聚四氟乙烯/聚丙烯杂化熔喷滤料结构与性能[J]. 东华大学学报(自然科学版), 2019, 45(3): 353-357.
LIU Miaozheng, WU Haibo. Structure and performance of polytetrafluoroethylene/polypropylene hybrid melt-blown filtration materials[J]. Journal of Donghua University(Natural Science Edition), 2019, 45(3): 353-357.
[36] 卢晨. 熔喷非织造材料静电驻极方法研究及水驻极机理探索[D]. 上海: 东华大学, 2021: 9.
LU Chen. Research on electrostatic electret method of meltblown nonwoven material and exploration of water electret mechanism[D]. Shanghai: Donghua Universuity, 2021: 9.
[37] 陈钢进, 肖慧明, 王耀翔. 聚丙烯非织造布的驻极体电荷存储特性和稳定性[J]. 纺织学报, 2007, 28(9): 125-128.
CHEN Gangjin, XIAO Huiming, WANG Yaoxiang. Charge characteristics and stability of non-woven polypropylene fabric electrets[J]. Journal of Textile Research, 2007, 28(9): 125-128.
[38] 姚翠娥, 王荣武. 驻极工艺对PP熔喷非织造过滤材料静电性能的影响[J]. 山东纺织科技, 2014, 55(1): 1-4.
YAO Cuie, WANG Rongwu. Research on electrostatic properties of polypropylene meltblown filters[J]. Shandong Textile Science & Technology, 2014, 55(1): 1-4.
[39] ONO Ryo, ODA Tetsuji. Charge storage in a corona-charged polypropylene film analyzed by LIPP and TSC method[C]// 37th IAS Annual Meeting. Pittsburgh: IEEE Transactions on Industry Applications, 2004: 1482-1488.
[40] 宋聚平, 夏钟福, 林华茂, 等. 恒栅流负电晕充电的Si基SiO2驻极体的电荷稳定性[J]. 功能材料, 1999, 30(6): 646-648.
SONG Juping, XIA Zhongfu, LIN Huamao, et al. The charge stability of SiO2 electret on Si substrate by constant current corona charging[J]. Journal of Functional Materials, 1999, 30(6): 646-648.
[41] ZHANG Haifeng, LIU Nuo, ZENG Qianru, et al. Design of polypropylene electret melt blown nonwovens with superior filtration efficiency stability through thermally stimulated charging[J]. Polymers, 2020. DOI:10.3390/polym12102341.
[42] GODRICH Sebastian, SCHMIDT Hanswerner, PAPASTAPASTAVROU Georg. Stability of charge distributions in electret films on the nm-scale[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4500-4509.
[43] YOVCHEVA Temenuzhka, MEKISHEV Georgi, MARINOV At. A percolation theory analysis of surface potential decay related to corona charged polypropy-lene (PP) electrets[J]. Journal of Physics Condensed Matter, 2004. DOI: 10.1088/0953-8984/16/3/021.
[44] DAS Dipayan, WAYCHAL Abhijit. On the triboelectrically charged nonwoven electrets for air filtration[J]. Journal of Electrostatics, 2016, 83: 73-77.
doi: 10.1016/j.elstat.2016.08.004
[45] IKEZAKI Kazuo, IRITANI Ken, NAKAMURA T, et al. Charge stability of TPX film electrets[J]. Journal of Electrostatics, 1995, 35(1): 41-46.
doi: 10.1016/0304-3886(95)00017-5
[46] XIAO Huiming, SONG Yeping, CHEN Gangjin. Correlation between charge decay and solvent effect for melt-blown polypropylene electret filter fabrics[J]. Journal of Electrostatics, 2014, 4(72): 311-314.
[47] KILIC Ali, SHIM Eunkyoung, YEOM Bongyeol, et al. Improving electret properties of PP filaments with barium titanate[J]. Journal of Electrostatics, 2013, 71(1): 41-47.
doi: 10.1016/j.elstat.2012.11.005
[48] YOVCHEVA Temenuzhka, MARUDOVA Mariya, VIRANEVA Asya, et al. Effect of gamma-irradiation on the electret properties of poly(L-lactide)[J]. Journal of Applied Polymer Science, 2013, 128(1): 139-144.
doi: 10.1002/app.v128.1
[49] THYSSEN Anders, ALMDAL Kristoffer, THOMSEN Erikv. Electret stability related to the crystallinity in polypropylene[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(5): 3038-3046.
[50] ZHANG Jianfeng, CHEN Gangjin, BHAT Gajanans, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309-48314.
doi: 10.1002/app.v137.4
[1] LIU Juntao, SUN Ting, TU Hu, HU Min, ZHANG Ruquan, SUN Lei, LUO Xia, JI Hua. Optimization of plasma cold pad-batch degreasing/bleaching process for cotton spunlace nonwoven by response surface method [J]. Journal of Textile Research, 2023, 44(11): 132-141.
[2] ZHANG Guangzhi, YANG Fusheng, FANG Jin, YANG Shun. One bath flame retardant finishing of polylactic acid nonwoven by phytic acid/chitosan/boric acid [J]. Journal of Textile Research, 2023, 44(10): 120-126.
[3] XU Ruidong, WANG Hang, QU Lijun, TIAN Mingwei. Preparation and properties of polyactic acid nonwoven substrate touch-sensing electronic textile [J]. Journal of Textile Research, 2023, 44(09): 161-167.
[4] GU Yingshu, ZHU Yanlong, WANG Bin, DONG Zhenfeng, GU Xiaoxia, YANG Changlan, CUI Meng, ZHANG Xiuqin. Preparation and properties of polylactic acid/electret melt-blown nonwovens [J]. Journal of Textile Research, 2023, 44(08): 41-49.
[5] JIANG Yifei, TIAN Yankuan, DAI Jun, WANG Xueli, LI Faxue, YU Jianyong, GAO Tingting. Design of solar-driven multistage desalination device and investigation of water collection rate [J]. Journal of Textile Research, 2023, 44(08): 9-17.
[6] TAN Qifei, CHEN Mengying, MA Shengsheng, SUN Mingxiang, DAI Chunpeng, LUO Lunting, CHEN Yiren. Preparation and properties of nonwoven flame retardant sound-absorbing material from Hu sheep wool [J]. Journal of Textile Research, 2023, 44(05): 147-154.
[7] HU Diefei, WANG Yan, YAO Juming, DAS Ripon, MILITKY Jiri, VENKATARAMAN Mohanapriya, ZHU Guocheng. Study on performance of nanofiber air filter materials [J]. Journal of Textile Research, 2023, 44(05): 77-83.
[8] YANG Xiaodong, YU Bin, SUN Hui, ZHU Feichao, LIU Peng. Preparation and filtration properties of polyethylene trifluoroethylene melt-blown nonwovens [J]. Journal of Textile Research, 2023, 44(02): 19-26.
[9] ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, ZHANG Qiang, HUANG Ruijie, YE Xiangyu, WANG Lunhe, XUAN Xiaoya, YU Bin, ZHU Feichao. Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials [J]. Journal of Textile Research, 2023, 44(02): 55-62.
[10] WANG Hongjie, YAO Lan, WANG He, ZHANG Zhong. Preparation and electrochemical performances of melt-blown nonwovens electrode from medical mask [J]. Journal of Textile Research, 2022, 43(12): 22-28.
[11] WU Yanjin, WANG Jiang, WANG Hong. Preparation and charging characteristics analysis of hydro charging polypropylene melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(12): 29-34.
[12] JIN Guanxiu, ZHU Chengyan. Prediction of pore dimension in composite nonwovens based on image simulation and support vector machine [J]. Journal of Textile Research, 2022, 43(12): 75-81.
[13] LIU Ya, CHENG Kewei, ZHAO Yixia, YU Wen, ZHANG Shuping, QIAN Zimao. Preparation and properties of thermoplastic polyurethane meltblowns [J]. Journal of Textile Research, 2022, 43(11): 88-93.
[14] SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin. Structural design and application of wet-laid nonwovens for separating membrane support [J]. Journal of Textile Research, 2022, 43(06): 15-21.
[15] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!